Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-10T23:03:34.676Z Has data issue: false hasContentIssue false

High-current field emission from “flower-like” few-layer graphene grown on tip of nichrome (8020) wire

Published online by Cambridge University Press:  29 January 2018

Xiao-lu Yan
Affiliation:
Laboratory of Nanomaterial and Technology, College of Nuclear Science and Technology, Beijing Normal University, Beijing100875, China.
Bao-shun Wang
Affiliation:
Laboratory of Nanomaterial and Technology, College of Nuclear Science and Technology, Beijing Normal University, Beijing100875, China.
Rui-ting Zheng
Affiliation:
Laboratory of Nanomaterial and Technology, College of Nuclear Science and Technology, Beijing Normal University, Beijing100875, China.
Xiao-ling Wu
Affiliation:
Laboratory of Nanomaterial and Technology, College of Nuclear Science and Technology, Beijing Normal University, Beijing100875, China.
Guo-an Cheng*
Affiliation:
Laboratory of Nanomaterial and Technology, College of Nuclear Science and Technology, Beijing Normal University, Beijing100875, China.
*
Get access

Abstract

We report a novel tip-type field emission (FE) emitter by synthesizing the few-layer graphene (FLG) flakes on tip of nichrome (8020) wire (ϕ80 μm) by microwave plasma enhanced chemical vapor deposition(PECVD). These resultant random arrays of free-standing FLG flakes are aligned vertically to the substrate surface in a high-density and stacked to each other to form several larger “flower-like” agglomerates in spherical shapes. The FE performance of the tip-type FLG flakes emitter shows a low threshold field of 0.55 V/μm, a large field enhancement factor of 9455 ± 46, a large field emission current density of 22.18 A/cm2 at 2.70 V/μm, and an excellent field emission stability at high emission current densities (6.93 A/cm2). It can be used in variety of applications that include cathode-ray tube monitors, X-ray sources, electron microscopes, and other vacuum electronic applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Novoselov, K.S., Geim, K.S, Morozov, A.K., Jiang, S.V., Zhang, D., Dubonos, Y, Grigorieva, I.V. and Firsov, A.A., Science 306, 666669 (2004).CrossRefGoogle Scholar
Geim, A. K. and Novoselov, K.S., Nature materials 6, 183191 (2007).CrossRefGoogle Scholar
Novoselov, K.S., Geim, K.S., Morozov, A.K., Jiang, S.V., Katsnelson, D., Grigorieva, M.I., Dubonos, I.V. and Firsov, A.A., Nature 438, 197200 (2005).Google Scholar
Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S. and Geim, A.K., Rev. Mod. Phys. 81, 109162 (2009).CrossRefGoogle Scholar
Wang, X.R., Tabakman, S.M. and Dai, H.J., J. Am. Chem. Soc. 130, 8153 (2008).Google Scholar
Geim, A.K., Science 324, 15301534 (2009).Google Scholar
Malesevic, A., Kemps, R., Vanhulsel, A., Chowdhury, P.L., Volodin, A. and Haesendonck, C.H., J. Appl. Phys. 104, 084301 (2008).Google Scholar
Guo, X., Qin, S.C., Bai, S., Yue, H.W., Li, Y.L., Chen, Q., Li, J.S. and He, D.Y., J. Phys. D: Appl. Phys. 49, 385301 (2016).Google Scholar
Jayalakshmi, G., Saravanan, K., Arun, T., Suresh, K., Sundaravel, B., Panigrahi, B.K. and Kanjilal, D., Carbon 119, 172178 (2017).Google Scholar
Zhao, C.X., Zhang, Y., Deng, S.Z., Xu, N.S. and Chen, J., Journal of Alloys and Compounds 672, 433439 (2016).Google Scholar
Wei, Y., Jiang, K.L., Liu, L., Chen, Z. and Fan, S.S., Nano. Lett. 7(12), 37923797 (2007).Google Scholar
Kleshch, V.I., Bandurin, D.A., Orekhov, A.S., Purcell, S.T. and Obraztsov, A.N., Applied Surface Science 357, 19671974 (2015)Google Scholar
Fowler, R.H. and Nordheim, L., Proc R Soc London Ser A 119, 173181 (1928).Google Scholar
Xiao, Z.M., She, J.C., Deng, S.Z., Tang, Z.K., Li, Z.B., Lu, J.M. and Xu, N.S., ACS Nano 4, 63326336 (2010).Google Scholar
Deng, J.H., Zheng, R.T., Zhao, Y. and Cheng, G.A., ACS Nano 6, 37273733 (2012).Google Scholar
Kim, C., Choi, Y.S., Lee, S.M., Park, J.T., Kim, B. and Lee, Y.H., J. Am. Chem. Soc. 124, 99069911 (2002).CrossRefGoogle Scholar
Dean, K.A., Burgin, T.P. and Chalamala, B.R., Appl. Phys. Lett. 79, 18731875 (2001).Google Scholar
Ren, X.Y., Hou, X.Y, Yu, M.P., Ma, J.S. and Qiu, H, Materials Letters 210, 133135 (2018).Google Scholar
Dai, W., Chung, C.Y., Alam, F.E., Hung, T.T., Sun, H.Y., Wei, Q.P., Lin, C.T., Chen, S.K. and Chin, T.S., Materials Letters 205, 223225 (2017).Google Scholar
Kumar, A., Khan, S., Zulfequar, M., Harsh, and Husain, M., Applied Surface Science 402, 161167 (2017).Google Scholar
Wu, C.X., Li, F.S., Zhang, Y.A. and Guo, T.L., Vacuum 94, 4852 (2013).Google Scholar
Hojati-Talemi, P. and Simon, G.P., Carbon 49, 28692877 (2011).Google Scholar