Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T04:06:46.476Z Has data issue: false hasContentIssue false

High Temperature Organic Electronics

Published online by Cambridge University Press:  27 January 2020

Aristide Gumyusenge*
Affiliation:
Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, USA.
Jianguo Mei
Affiliation:
Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, USA.
*
Get access

Abstract

The emerging breakthroughs in space exploration, smart textiles, and novel automobile designs have increased technological demand for high temperature electronics. In this snapshot review we first discuss the fundamental challenges in achieving electronic operation at elevated temperatures, briefly review current efforts in finding materials that can sustain extreme heat, and then highlight the emergence of organic semiconductors as a new class of materials with potential for high temperature electronics applications. Through an overview of the state-of-the art materials designs and processing methods, we will layout molecular design principles and fabrication strategies towards achieving thermally stable operation in organic electronics.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hunt, B., Tooke, A., in 18th Eur. Microelectron. Pack. Conf. , 2011, pp. 1-5.Google Scholar
Watson, J., Castro, G., J. Mater. Sci. Mater. Electron 2015, 26 , 9226-9235.CrossRefGoogle Scholar
Wondrak, W., Microelectron. Reliab. 1999, 39 , 1113-1120.CrossRefGoogle Scholar
Sze, S. M., Physics of semiconductor devices , 3rd ed., Hoboken, N.J. : Wiley-Interscience, 2007.Google Scholar
Neudeck, P. G., Okojie, R. S., Liang-Yu, C., Proc. IEEE 2002, 90 , 1065-1076.CrossRefGoogle Scholar
Chow, T. P., Tyagi, R., IEEE Trans. Electron. Devices 1994, 41 , 1481-1483.CrossRefGoogle Scholar
Neudeck, P. G., Spry, D. J., Chen, L. Y., Beheim, G. M., Okojie, R. S., Chang, C. W., Meredith, R. D., Ferrier, T. L., Evans, L. J., Krasowski, M. J., Prokop, N. F., IEEE Electron. Device Lett. 2008, 29, 456-459.CrossRefGoogle Scholar
Coropceanu, V., Cornil, J., da Silva Filho, D. A., Olivier, Y., Silbey, R., Bredas, J.-L., Chem. Rev. 2007, 107, 926-952.CrossRefGoogle Scholar
Lee Eun, K., Lee Moo, Y., Park Cheol, H., Lee Hae, R., Oh Joon, H., Adv. Mater. 2017, 29, 1703638.Google Scholar
Martin, S., , F. M. J., Mingqi, L., Moo, K. K., Peter, T., , B. G. C., Adv. Mater. 2017, 29, 1605511.Google Scholar
Sekitani, T., Iba, S., Kato, Y., Someya, T., Appl. Phys. Lett. 2004, 85 , 3902-3904.CrossRefGoogle Scholar
Jihua, C., Keong, T. C., Junyan, Y., Charles, S., Max, S., John, A., , M. D. C., J. Poly. Sci. Part B: Poly. Physics 2006, 44, 3631-3641.Google Scholar
Kintigh, J. T., Hodgson, J. L., Singh, A., Pramanik, C., Larson, A. M., Zhou, L., Briggs, J. B., Noll, B. C., Kheirkhahi, E., Pohl, K., McGruer, N. E., Miller, G. P., J. Phys. Chem. C 2014, 118 , 26955-26963.CrossRefGoogle Scholar
Abe, M., Mori, T., Osaka, I., Sugimoto, K., Takimiya, K., Chem Mater . 2015, 27, 5049-5057.CrossRefGoogle Scholar
Park, J.-I., Chung, J. W., Kim, J.-Y., Lee, J., Jung, J. Y., Koo, B., Lee, B.-L., Lee, S. W., Jin, Y. W., Lee, S. Y., J. Am Chem. Soc. 2015, 137, 12175-12178.CrossRefGoogle Scholar
Tomoyuki, Y., Kazunori, K., Takeyoshi, T., Ute, Z., Hagen, K., Kazuo, T., Yuji, S., Masahiro, H., Tsuyoshi, S., Takao, S., Adv. Mater. 2013, 25, 3639-3644.Google Scholar
Dong, Y., Guo, Y., Zhang, H., Shi, Y., Zhang, J., Li, H., Liu, J., Lu, X., Yi, Y., Li, T., Hu, W., Jiang, L., Front. Chem. 2019, 7.Google Scholar
Arnold, C. Jr., J. Polym. Sci. Macromol. Rev. 1979, 14, 265-378.CrossRefGoogle Scholar
Noriega, R., Rivnay, J., Vandewal, K., Koch, F. P. V., Stingelin, N., Smith, P., Toney, M. F., Salleo, A., Nat. Mater. 2013, 12 , 1038-1044.CrossRefGoogle Scholar
Gumyusenge, A., Zhao, X., Zhao, Y., Mei, J., ACS Appl. Mater. Interfaces 2018, 10 , 4904-4909.CrossRefGoogle Scholar
Zhao, Y., Zhao, X., Roders, M., Gumyusenge, A., Ayzner, A. L., Mei, J., Adv. Mater. 2017, 29, 1605056.CrossRefGoogle Scholar
Gumyusenge, A., Tran, D. T., Luo, X., Pitch, G. M., Zhao, Y., Jenkins, K. A., Dunn, T. J., Ayzner, A. L., Savoie, B. M., Mei, J., Science 2018, 362, 1131-1134.CrossRefGoogle Scholar
Avinesh, K., , B. M. A., Ken, S., Theo, K., Natalie, S. S., Adv. Mater. 2009, 21 , 4447-4451.Google Scholar
Goffri, S., Muller, C., Stingelin-Stutzmann, N., Breiby, D. W., Radano, C. P., Andreasen, J. W., Thompson, R., Janssen, R. A. J., Nielsen, M. M., Smith, P., Sirringhaus, H., Nat. Mater. 2006, 5, 950.CrossRefGoogle Scholar
Lei, Y., Deng, P., Lin, M., Zheng, X., Zhu, F., Ong, B. S., Adv. Mater. 2016, 28, 6687-6694.CrossRefGoogle Scholar
Lei, Y., Deng, P., Li, J., Lin, M., Zhu, F., Ng, T.-W., Lee, C.-S., Ong, B. S., Sci. Rep. 2016, 6, 24476.CrossRefGoogle Scholar
Liaw, D.-J., Wang, K.-L., Huang, Y.-C., Lee, K.-R., Lai, J.-Y., Ha, C.-S., Prog. Poly. Sci 2012, 37, 907-974.CrossRefGoogle Scholar
Ji, D., Li, T., Hu, W., Fuchs, H., Adv. Mater. 2019, 31 , 1806070.CrossRefGoogle Scholar
Gumyusenge, A., Luo, X., Ke, Z., Tran, D. T., Mei, J., ACS Mater. Lett. 2019, 1, 154-157.CrossRefGoogle Scholar