Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T14:56:42.893Z Has data issue: false hasContentIssue false

Heterojunction solar cells on flexible silicon wafers

Published online by Cambridge University Press:  11 January 2016

André Augusto*
Affiliation:
Arizona State University, Electrical Engineering, P.O. Box 875706, Tempe, AZ 85287-5706, U.S.A.
Pradeep Balaji
Affiliation:
Arizona State University, Electrical Engineering, P.O. Box 875706, Tempe, AZ 85287-5706, U.S.A.
Harsh Jain
Affiliation:
Arizona State University, Electrical Engineering, P.O. Box 875706, Tempe, AZ 85287-5706, U.S.A.
Stanislau Y. Herasimenka
Affiliation:
Arizona State University, Electrical Engineering, P.O. Box 875706, Tempe, AZ 85287-5706, U.S.A.
Stuart G. Bowden
Affiliation:
Arizona State University, Electrical Engineering, P.O. Box 875706, Tempe, AZ 85287-5706, U.S.A.
*
Get access

Abstract

Current large-scale production of flexible solar devices delivers cells with low efficiency. In this paper we present an alternative path to organic or inorganic thin films. Our cells combine the remarkable surface passivation properties of the silicon heterojunction solar cells design, and the quality of n-type Cz wafers. The cells were manufactured on 50-70 µm-thick wafers. The cells have and efficiency of 17.8-19.2%, open-circuit voltages of 735-742 mV, short-circuit currents of 34.5-35.5 mA/cm2, and fill-factors of 72-75%. The cells are not as flexible as bare wafers. Thin cells are particular sensitive to the additional stress introduced by the busbars and the soldered ribbons. For radiuses of curvature over 8cm the cells efficiency remains the same, for radius equal to 6cm the cell efficiency drops less than 2%, and for radius equal to 4cm the drop is less than 3%. The broken fingers due to smaller bend radius lead to higher series resistance and subsequently lower field-factors.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Vygranenko, Y., Khosropour, A., Yang, R., Sazonov, A., Kosarev, A., Abramov, A., and Terukove, E.., Canadian Journal of Physics 92, 871 (2014).Google Scholar
Reinhard, P., Chirila, A., Blosch, P., Pianezzi, F., Nishiwaki, S., Buechelers, S., and Tiwari, A.N., IEEE Journal of Photovoltaics 3, 572 (2013).Google Scholar
Schuetze, T., Energies 6, 2982 (2013).Google Scholar
Redweik, P., Catita, C., and Brito, M., Solar Energy 97, 332 (2013).Google Scholar
Wolf, S., Descoeudres, A., Holman, Z. C., and Ballifl, C., Green 2, 7 (2012).Google Scholar
Aberle, A. G., Prog. Photovolt: Res. Appl. 8, 473 (2000).Google Scholar
Y Herasimenkal, S., J Dauksher, W., J Tracy, C., Lee, J., Augusto, A., Jain, H., Tyler, K., Kiefer, Z., Balaji, P., Bowden, S. G. and Honsberg, C., in Proceedings of 31st European Photovoltaic Solar Energy Conference and Exhibition, 761 (2015).Google Scholar
Herasimenka, S. Y., Dauksher, B., Tracy, C., Pickett, G., Ghosh, K., Sharma, V., Bailly, M., and Bowden, S. G., in proceedings of 28th European Photovoltaic Specialists Conference (2013).Google Scholar
Mews, M., Schulze, T. F., Mingirulli, N., and Korte, L., Appl. Phys Lett. 102, 122106 (2013).Google Scholar
Geissbuhler, J., Wolf, S., Demaurex, B., Seif, J. P., Alexander, D. T. L., Barraud, L., and Ballif, C., Appl. Phys Lett. 102, 231604 (2013)CrossRefGoogle Scholar
Holman, Z. C., Filipic, M., Descoeudres, A., Wolf, S., Smole, F., Topic, M., and Ballif, C., Appl. Phys Lett. 113, 013107 (2013).Google Scholar
Gogolin, R., Turcu, M., Ferre, , Clemens, J., Harder, N. P., Brendel, R., and Schmidt, J., IEEE Journal of Photovoltaics 4, 1169 (2014).CrossRefGoogle Scholar
Demant, M., Rein, S., Krisch, J., Schoenfelder, S., Fischer, C., Bartsch, S., and Preu, R., in Proceedings of 37th IEEE Photovoltaic Specialists Conference, 001641 (2011).Google Scholar