Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T19:47:22.743Z Has data issue: false hasContentIssue false

Glass structure and crystallization in boro-alumino-silicate glasses containing rare earth and transition metal cations: a US-UK collaborative program

Published online by Cambridge University Press:  06 February 2019

John S. McCloy*
Affiliation:
Washington State University, Pullman, WA, USA Pacific Northwest National Laboratory, Richland, WA, USA
José Marcial
Affiliation:
Washington State University, Pullman, WA, USA
Deepak Patil
Affiliation:
Washington State University, Pullman, WA, USA
Muad Saleh
Affiliation:
Washington State University, Pullman, WA, USA
Mostafa Ahmadzadeh
Affiliation:
Washington State University, Pullman, WA, USA
Hua Chen
Affiliation:
Washington State University, Pullman, WA, USA Inner Mongolia University of Science and Technology, China
Jarrod V. Crum
Affiliation:
Pacific Northwest National Laboratory, Richland, WA, USA
Brian J. Riley
Affiliation:
Washington State University, Pullman, WA, USA Pacific Northwest National Laboratory, Richland, WA, USA
Hrishikesh Kamat
Affiliation:
Rutgers University, New Jersey, USA
Antoine Bréhault
Affiliation:
Rutgers University, New Jersey, USA
Ashutosh Goel
Affiliation:
Rutgers University, New Jersey, USA
Kristian E. Barnsley
Affiliation:
University of Warwick, Coventry, UK
John V. Hanna
Affiliation:
University of Warwick, Coventry, UK
Prashant Rajbhandari
Affiliation:
University of Sheffield, Sheffield, UK
Claire L. Corkhill
Affiliation:
University of Sheffield, Sheffield, UK
Russell J. Hand
Affiliation:
University of Sheffield, Sheffield, UK
Neil C. Hyatt
Affiliation:
University of Sheffield, Sheffield, UK
*
Get access

Abstract

Nuclear wastes generated from reprocessing of used nuclear fuel tend to contain a large fraction of rare earth (RE, e.g., Nd3+), transition (TM, e.g., Mo6+, Zr4+), alkali (A, e.g., Cs+), and alkaline earth cations (AE, e.g., Ba2+, Sr2+). Various strategies have been considered for immobilizing such waste streams, varying from nominally crystal-free glass to glass-ceramic to multi-phase ceramic waste forms. For glass and glass-ceramic waste forms, the added glass-forming system is generally alkali-alkaline earth-aluminoborosilicate (i.e., Na-Ca-Al-B-Si oxide). In a US-UK collaborative project, summarized here, we investigated the glass structure and crystallization dependence on compositional changes in simulated nuclear waste glasses and glass-ceramics. Compositions ranged in complexity from five – to – eight oxides. Specifically, the roles of Mo and rare earths are investigated, since a proposed glass-ceramic waste form contains crystalline phases such as powellite [(AE,A,RE)MoO4] and oxyapatite [(RE,AE,A)10Si6O26], and the precipitation of molybdenum phases is known to be affected by the rare earth concentration in the glass. Additionally, the effects of other chemical additions have been systematically investigated, including Zr, Ru, P, and Ti. A series of studies were also undertaken to ascertain the effect of the RE size on glass structure and on partitioning to crystal phases, investigating similarities and differences in glasses containing single RE oxides of Sc, Y, La, Ce, Nd, Sm, Er, Yb, or Lu. Finally, the effect of charge compensation was investigated by considering not only the commonly assessed peralkaline glass but also metaluminous and peraluminous compositions. Glass structure and crystallization studies were conducted by spectroscopic methods (i.e., Raman, X-ray absorption, nuclear magnetic resonance (NMR), optical absorption, photoluminescence, photoluminescence excitation, X-ray photoelectron spectroscopy), microscopy (i.e., scanning electron microscopy, transmission electron microscopy, electron probe microanalysis), scattering (i.e., X-ray and neutron diffraction, small angle measurements), and physical characterization (i.e., differential thermal analysis, liquidus, viscosity, density). This paper will give an overview of the research program and some example unpublished results on glass-ceramic crystallization kinetics, microstructure, and Raman spectra, as well as some examples of the effects of rare earths on the absorption, luminescence, and NMR spectra of starting glasses. The formal collaboration described here has resulted in the generation of a large number of results, some of which are still in the process of being published as separate studies.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Crum, J.V., Turo, L., Riley, B., Tang, M. and Kossoy, A., J. Am. Ceram. Soc. 95, 1297 (2012).CrossRefGoogle Scholar
Crum, J., Maio, V., McCloy, J., Scott, C., Riley, B., Benefiel, B., Vienna, J., Archibald, K., Rodriguez, C., Rutledge, V., Zhu, Z., Ryan, J. and Olszta, M., J. Nucl. Mater. 444, 481 (2014).CrossRefGoogle Scholar
Vienna, J.D., Crum, J.V., Sevigny, G.J. and Smith, G.L., Preliminary Technology Maturation Plan for Immobilization of High-Level Waste in Glass-Ceramics, Pacific Northwest National Laboratory, Richland, WA, PNNL-21714, FCRD-SWF-2012-000152 (2012).CrossRefGoogle Scholar
Tan, S., Ojovan, M.I., Hyatt, N.C. and Hand, R.J., J. Nucl. Mater. 458, 335 (2015).CrossRefGoogle Scholar
Assessment of the State of the Art of HLW and ILW Processing Technologies for Fast Reactor Recycle Wastes, National Nuclear Laboratory NNL(13)12536 (2013).Google Scholar
The UK’s Nuclear Future, Department for Business, Innovation and SkillsHM Government Industrial Strategy Report (2013).Google Scholar
McCloy, J.S., Riley, B., Crum, J., Marcial, J., Reiser, J., Kruska, K., Peterson, J., Neuville, D., Patil, D., Barnsley, K. and Hanna, J.V., (submitted).Google Scholar
Brehault, A., Patil, D., Kamat, H., Youngman, R.E., Thirion, L.M., Mauro, J.C., Corkhill, C.L., McCloy, J.S. and Goel, A., J. Phys. Chem. B 122, 1714 (2018).CrossRefGoogle Scholar
Patil, D.S., Konale, M., Gabel, M., Neill, O.K., Crum, J.V., Goel, A., Stennett, M.C., Hyatt, N.C. and McCloy, J.S., J. Nucl. Mater. 510, 539 (2018).CrossRefGoogle Scholar
McCloy, J., Marcial, J., Riley, B., Neufeind, J., Crum, J. and Patil, D., MRS Adv. (accepted).Google Scholar
Calas, G., Le Grand, M., Galoisy, L. and Ghaleb, D., J. Nucl. Mater. 322, 15 (2003).CrossRefGoogle Scholar
Martineau, C., Michaelis, V.K., Schuller, S. and Kroeker, S., Chem. Mater. 22, 4896 (2010).CrossRefGoogle Scholar
Chouard, N., Caurant, D., Majérus, O., Dussossoy, J.L., Klimin, S., Pytalev, D., Baddour-Hadjean, R. and Pereira-Ramos, J.P., J. Mater. Sci. 1 (2014).Google Scholar
Chouard, N., Caurant, D., Majérus, O., Dussossoy, J.L., Ledieu, A., Peuget, S., Baddour-Hadjean, R. and Pereira-Ramos, J.P., J. Non-Cryst. Solids 357, 2752 (2011).CrossRefGoogle Scholar
Majérus, O., Caurant, D., Quintas, A., Dussossoy, J.-L., Bardez, I. and Loiseau, P., J. Non-Cryst. Solids 357, 2744 (2011).CrossRefGoogle Scholar
Quintas, A., Caurant, D., Majérus, O., Loiseau, P., Charpentier, T. and Dussossoy, J.-L., J. Alloys Compd. 714, 47 (2017).CrossRefGoogle Scholar
Perret, D., Bardez-Giboire, I., Dussosoy, J.L., Bousquet, N. and Baudet, F. in JMP Discovery Summit, 2011, https://community.jmp.com/kvoqx44227/attachments/kvoqx44227/discovery, accessed 1 Dec 2018.Google Scholar
Chouard, N., Caurant, D., Majérus, O., Guezi-Hasni, N., Dussossoy, J.-L., Baddour-Hadjean, R. and Pereira-Ramos, J.-P., J. Alloys Compd. 671, 84 (2016).CrossRefGoogle Scholar
Farges, F., Siewert, R., Brown, G.E., Guesdon, A. and Morin, G., Canad. Mineral. 44, 731 (2006).CrossRefGoogle Scholar
Hyatt, N.C., Short, R.J., Hand, R.J., Lee, W.E., Livens, F., Charnock, J.M. and Bilsborrow, R.L., In Environmental Issues and Waste Management Technologies in the Ceramic and Nuclear Industries X, edited, (John Wiley & Sons, Inc., 2006), pp. 179.Google Scholar
McKeown, D.A., Gan, H. and Pegg, I.L., J. Nucl. Mater. 488, 143 (2017).CrossRefGoogle Scholar
Ponader, C.W. and Brown, G.E., Geochim. Cosmochim. Acta 53, 2893 (1989).CrossRefGoogle Scholar
Trégouët, H., Caurant, D., Majérus, O., Charpentier, T., Cormier, L. and Pytalev, D., Procedia Mater. Sci. 7, 131 (2014).CrossRefGoogle Scholar
Bardez, I., Caurant, D., Loiseau, P., Baffier, N., Dussossoy, J.L., Gervais, C., Ribot, F. and Neuville, D.R., Phys. Chem. Glasses 46, 320 (2005).Google Scholar
Quintas, A., Caurant, D., Majérus, O., Charpentier, T. and Dussossoy, J.L., Mat. Res. Bull. 44, 1895 (2009).CrossRefGoogle Scholar
Nicoleau, E., Angeli, F., Schuller, S., Charpentier, T., Jollivet, P. and Moskura, M., J. Non-Cryst. Solids 438, 37 (2016).CrossRefGoogle Scholar
Kroeker, S., Schuller, S., Wren, J.E.C., Greer, B.J. and Mesbah, A., J. Am. Ceram. Soc. 99, 1557 (2016).CrossRefGoogle Scholar
Magnin, M., Schuller, S., Mercier, C., Trébosc, J., Caurant, D., Majérus, O., Angéli, F. and Charpentier, T., J. Am. Ceram. Soc. 94, 4274 (2011).CrossRefGoogle Scholar
Caurant, D., Majérus, O., Fadel, E., Quintas, A., Gervais, C., Charpentier, T. and Neuville, D., J. Nucl. Mater. 396, 94 (2010).CrossRefGoogle Scholar
Kroeker, S., Higman, C.S., Michaelis, V.K., Svenda, N.B. and Schuller, S., Mater. Res. Soc. Symp. Proc. 1265, (2010).CrossRefGoogle Scholar
Angeli, F., Villain, O., Schuller, S., Ispas, S. and Charpentier, T., Geochim. Cosmochim. Acta 75, 2453 (2011).CrossRefGoogle Scholar
Belov, K.P., Kadmtseva, A.M. and Levitin, R.Z., Sov. Phys. JETP 20, 291 (1965).Google Scholar
Bohigas, X., Lluma, J., Tejada, J., Vistin, L.L., Sorokin, N.I. and Sobolev, B.P., Bull. Soc. Cat. Cien. 13, 273 (1992).Google Scholar
Shannon, R.D., Acta Crystallog. A 32, 751 (1976).CrossRefGoogle Scholar
Nicoleau, E., Schuller, S., Angeli, F., Charpentier, T., Jollivet, P., Le Gac, A., Fournier, M., Mesbah, A. and Vasconcelos, F., J. Non-Cryst. Solids 427, 120 (2015).CrossRefGoogle Scholar
Dejneka, M.J., Streltsov, A., Pal, S., Frutos, A.G., Powell, C.L., Yost, K., Yuen, P.K., Müller, U. and Lahiri, J., Proc. Natl. Acad. Sci. U. S. A. 100, 389 (2003).CrossRefGoogle Scholar
Caurant, D., Opt. Spectrosc. 116, 667 (2014).CrossRefGoogle Scholar
Bardez, I., Caurant, D., Dussosoy, J.L., Loiseau, P., Gervais, C., Ribot, F., Neuville, D., Baffier, N. and Fillet, C., Nucl. Sci. Eng. 153, 272 (2006).CrossRefGoogle Scholar
Kidari, A., Dussossoy, J.-L., Brackx, E., Caurant, D., Magnin, M. and Bardez-Giboire, I., J. Am. Ceram. Soc. 95, 2537 (2012).CrossRefGoogle Scholar
Winterstein-Beckmann, A., Möncke, D., Palles, D., Kamitsos, E.I. and Wondraczek, L., J. Phys. Chem. B 119, 3259 (2015).CrossRefGoogle Scholar
Ohashi, H., Alba, M.D., Becerro, A.I., Chain, P. and Escudero, A., J. Phys. Chem. Solids 68, 464 (2007).CrossRefGoogle Scholar
Soetebier, F. and Urland, W., Kristallogr, Z.. - New Cryst. Struct. 217, 22 (2002).Google Scholar
Foord, E.E., Birmingham, S.D., Demartin, F., Pilati, T., Gramaccioli, C.M. and Lichte, F.E., Canad. Mineral. 31, 337 (1993).Google Scholar
Qian, M., Li, L., Li, H. and Strachan, D.M., J. Non-Cryst. Solids 333, 1 (2004).CrossRefGoogle Scholar