Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T13:10:32.906Z Has data issue: false hasContentIssue false

Fracture evaluation of square transversal section specimens subjected by torsional cyclic loads

Published online by Cambridge University Press:  29 November 2019

Pavel Almaguer-Zaldivar*
Affiliation:
Universidad de Holguín. Avenida XX Aniversario s/n. Piedra Blanca, Holguín, Cuba, CP 80700
Patricia Zambrano-Robledo
Affiliation:
Universidad Autónoma de Nuevo León, Avenida Manuel L. Barragán, No. 4904, Monterrey, México, CP 64290
José Martínez-Grave-de-Peralta
Affiliation:
Universidad de Holguín. Avenida XX Aniversario s/n. Piedra Blanca, Holguín, Cuba, CP 80700
*
Get access

Abstract

In this work, the evaluation of the growth of cracks in specimens of square cross section requested by symmetrical cyclic torsion moments was performed. The specimens were manufactured from AISI 1015. A pre-crack was machined on one side to induce the crack growth. The crack length with the increase in the number of cycles was measured by means of penetrating liquids method. By means of the Finite Element Method, the stress – strain state of the specimens was simulated. The displacements in the crack tip were determined to apply the technique of the Crack Tip Opening Displacements to calculate the Stress Intensity Factor. The calculated Stress Intensity Factor was related to the dimensions of the specimen and the size of the crack to propose an equation for the shape function.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrade, A., Mosquera, W., Vanegas, L.. Entre Ciencia e Ingeniería. 9 (18), 39-48 (2015).Google Scholar
Grajales, J., Vanegas, L.. Entre Ciencia e Ingeniería. 10 (19), 70-80 (2016).Google Scholar
Rodríguez-Calderón, W., Rojas-Aguero, R., Yépez-Aguirre J, J., et al. Revista UIS Ingenierías. 16 (2), 151-159 (2017).CrossRefGoogle Scholar
Berrios, D. R., Franco, R.. Información Tecnológica. 29 (5), 19-34. (2018).CrossRefGoogle Scholar
Martins, R. F., Ferreira, L., Reis, L. et al. Theo. App. Fract. Mech. 85, 56 (2016).CrossRefGoogle Scholar
Shariati, M., Mohammadi, E., Nejad, R. M.. Int. J. Press. Vessels Pip. 150, 1 (2017).CrossRefGoogle Scholar
Alegre, J., Gutiérrez-Solana, F., Aragón, A.. Eng Fail Anal. 11 (5), 737-750. (2004)CrossRefGoogle Scholar
Crupi, G., Crupi, V., Guglielmino, E.. Eng Fail Anal. 12, 129 (2005).CrossRefGoogle Scholar
Zerbst, U., Heinimann, M., Dalle, C.. Eng Fract Mech. 76, 5 (2009).CrossRefGoogle Scholar
Cerit, M., Hosgor, K., Ayhan, A.. Eng Fract Mech. 116, 69 (2014).CrossRefGoogle Scholar
Suresh, S., Naren, V., Prrithvi, P.. Procedia Engineer. 86, 234 (2014).Google Scholar
Ayatollahi, M. R., Razavi, S. M., Yahya, Y.. Eng. Fract. Mech. 145, 115 (2015).CrossRefGoogle Scholar
Leander, J., Aygül, M., Norlin, B.. International Journal of Fatigue. 2013. 56, 25 (2013).CrossRefGoogle Scholar
Rodriguez, J., Santos, A., Jose, D.. Procedia Materials Science. 2015. 9, 195. (2015).Google Scholar
ASTM International. Standard ASTM E 2207-02. Standard Practice for Strain-Controlled Axial-Torsional Fatigue Testing with Thin-Walled Tubular Specimens. 2002. United States.Google Scholar
ASTM International. Standard ASTM E 2368-04. Standard Practice for Strain Controlled Thermomechanical Fatigue Testing. 2004. United States.Google Scholar
ASTM International. Standard ASTM E 466-96. Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials. 1996. United States.Google Scholar
ASTM International. Standard ASTM E 468-90. Standard Practice for Presentation of Constant Amplitude Fatigue Test Results for Metallic Materials. 1990. United States.Google Scholar
ASTM International. Standard ASTM E 606-92. Standard Practice for Strain-Controlled Fatigue Testing. 1992. United States.Google Scholar
ASTM International. Standard ASTM E 8M-04 Standard Test Methods for Tension Testing of Metallic Materials. 2004. United States.Google Scholar
MatWeb, Your Source for Materials Information. Available at: http://www.matweb.com, (accesed 16 may 2019)Google Scholar
Almaguer-Zaldivar, P., Martínez-Grave-de-Peralta, J., González-Utria, E., Santiago-Cuenca, H. Ingeniería Mecánica. 21 (2), 93-100 (2018).Google Scholar