Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T09:37:06.044Z Has data issue: false hasContentIssue false

FITC Embedded ZnO/Silica Nanocomposites as probe for detection of L-lactate: Point-of-Care diagnosis

Published online by Cambridge University Press:  12 March 2019

S. S. Joglekar
Affiliation:
Department of Applied Physics, Defence Institute of Advanced technology, Pune-411025, India.
P. V. Pimpliskar
Affiliation:
Department of Applied Physics, Defence Institute of Advanced technology, Pune-411025, India.
V. V. Sirdeshmukh
Affiliation:
Applied Science Department, College of Engineering, Pune, Pune-411005, India.
P. S. Alegaonkar
Affiliation:
Department of Applied Physics, Defence Institute of Advanced technology, Pune-411025, India.
A. A. Kale*
Affiliation:
Applied Science Department, College of Engineering, Pune, Pune-411005, India.
*
Get access

Abstract:

A novel Fluorescence Resonance Energy Transfer (FRET) based ‘Turn-ON’ biosensor has been developed using fluorescent ZnO/APTMS-FITC (ZFA) nanoflakes as sensing probe. In this biosensor, Lactate Dehydrogenase (LDH) is used for the detection of L-lactate, a diagnostic marker for abnormal physiological conditions like muscular dystrophy, myocardial infraction, abnormal tissue formation and tissue damage. Lactate Dehydrogeanse (LDH) catalyses the conversion of L-Lactate to L-Pyruvate, in presence of β-NAD reducing to β-NADH. We tried to explore this mechanism with FRET based system for highly sensitive detection of L-Lactate. The fluorescence of these nanoflakes can be reversibly quenched in the presence of β-NAD.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Hirschhaeuser, F., Sattler, U. G. A., and Mueller-Klieser, W., Lactate: A metabolic key player in cancer, vol. 71. 2011.Google Scholar
Moran, J. H. and Schnellmann, R. G., A rapid b-NADH-linked fluorescence assay for lactate dehydrogenase in cellular death, vol. 36. 1996.CrossRefGoogle Scholar
Phypers, B. and Pierce, J. M. T., “Lactate physiology in health and disease,” Contin. Educ. Anaesth. Crit. Care Pain, vol. 6, no. 3, pp. 128132, 2006.CrossRefGoogle Scholar
Rotenberg, Z., Weinberger, I., Sagie, A., Fuchs, J., Sperling, O., and Agmon, J., “Lactate dehydrogenase isoenzymes in serum during recent acute myocardial infarction,” Clinical Chemistry, 1987. [Online]. Available: https://www.mendeley.com/research-papers/lactate-dehydrogenase-isoenzymes-serum-during-recent-acute-myocardial-infarction. [Accessed: 24-Sep-2018].Google ScholarPubMed
Rahman, M. M., Shiddiky, M. J. A., Rahman, M. A., and Shim, Y. B., “A lactate biosensor based on lactate dehydrogenase/nictotinamide adenine dinucleotide (oxidized form) immobilized on a conducting polymer/multiwall carbon nanotube composite film,” Anal. Biochem., vol. 384, no. 1, pp. 159165, 2009.CrossRefGoogle ScholarPubMed
Chan, F. K. M., Moriwaki, K., and De Rosa, M. J., “Detection of necrosis by release of lactate dehydrogenase activity,” Methods Mol. Biol., vol. 979, pp. 6570, 2013.CrossRefGoogle ScholarPubMed
Simonides, W. S., Zaremba, R., van Hardeveld, C., and van der Laarse, W. J., “A nonenzymatic method for the determination of picomole amounts of lactate using HPLC: Its application to single muscle fibers,” Anal. Biochem., vol. 169, no. 2, pp. 268273, 1988.CrossRefGoogle ScholarPubMed
Sartain, F. K., Yang, X., and Lowe, C. R., “Holographic lactate sensor,” Anal. Chem., vol. 78, no. 16, pp. 56645670, 2006.CrossRefGoogle ScholarPubMed
Chu, W.-J. et al. , “Magnetic resonance spectroscopy imaging of lactate in patients with bipolar disorder.,” Psychiatry Res., vol. 213, no. 3, pp. 230–4, 2013.CrossRefGoogle ScholarPubMed
Goh, J. H., Mason, a., Al-Shamma’a, a. I., Wylie, S. R., Field, M., and Browning, P., “Lactate detection using a microwave cavity sensor for biomedical applications,” 2011 Fifth Int. Conf. Sens. Technol., pp. 436441, 2011.CrossRefGoogle Scholar
Zheng, X. T., Yang, H. B., and Li, C. M., “Optical detection of single cell lactate release for cancer metabolic analysis,” Anal. Chem., vol. 82, no. 12, pp. 50825087, 2010.CrossRefGoogle ScholarPubMed
Chan, W. C. W., Maxwell, D. J., Gao, X., Bailey, R. E., Han, M., and Nie, S., Luminescent quantum dots for multiplexed biological detection and imaging, vol. 13. 2002.Google Scholar
He, X. et al. , “Electrospun quantum dots/polymer composite porous fibers for turn-on fluorescent detection of lactate dehydrogenase,” J. Mater. Chem., vol. 22, p. 18471, 2012.CrossRefGoogle Scholar
Yang, L., Ren, X., Meng, X., Li, H., and Tang, F., “Optical analysis of lactate dehydrogenase and glucose by CdTe quantum dots and their dual simultaneous detection,” Biosens. Bioelectron., vol. 26, no. 8, pp. 34883493, 2011.CrossRefGoogle ScholarPubMed
Rasmussen, J. W., Martinez, E., Louka, P., and Wingett, D. G., “Zinc Oxide Nanoparticles for Selective Destruction of Tumor Cells and Potential for Drug Delivery Applications,” NIH Public Accsess, vol. 7, no. 9, pp. 10631077, 2011.Google Scholar
Tang, J.-F., Su, H.-H., Lu, Y.-M., and Chu, S.-Y., “Controlled growth of ZnO nanoflowers on nanowall and nanorod networks via a hydrothermal method,” CrystEngComm, vol. 17, no. 3, pp. 592597, 2015.CrossRefGoogle Scholar
Arya, S. K., Saha, S., Ramirez-Vick, J. E., Gupta, V., Bhansali, S., and Singh, S. P., Recent advances in ZnO nanostructures and thin films for biosensor applications: Review, vol. 737. 2012.Google ScholarPubMed
Dev, A., Elshaer, A., and Voss, T., “Optical Applications of ZnO Nanowires,” IEEE J. Sel. Top. Quantum Electron., vol. 17, no. 4, pp. 896906, 2011.CrossRefGoogle Scholar
Zhang, Z.-Y. and Xiong, H.-M., “Photoluminescent ZnO Nanoparticles and Their Biological Applications,” Materials, vol. 8, no. 6, pp. 31013127, 2015.CrossRefGoogle Scholar
Zhao, M. et al. , “Synthesis of mesoporous multiwall ZnO nanotubes by replicating silk and application for enzymatic biosensor,” Biosens. Bioelectron., vol. 49, pp. 318322, 2013.CrossRefGoogle ScholarPubMed
Yi, G.-C., Wang, C., and Park, W. I., “ZnO nanorods: synthesis, characterization and applications,” Semicond. Sci. Technol., vol. 20, no. 4, pp. S22S34, 2005.CrossRefGoogle Scholar
Kumar, P., Kumar, P., Deep, A., and Bharadwaj, L. M., “Synthesis and conjugation of ZnO nanoparticles with bovine serum albumin for biological applications,” Appl. Nanosci., pp. 141144, 2012.Google Scholar
Bartczak, D., Baradez, M.-O., Goenaga-Infante, H., and Marshall, D., “Label-free monitoring of the nanoparticle surface modification effects on cellular uptake, trafficking and toxicity,” Toxicol Res, vol. 4, no. 1, pp. 169176, 2015.CrossRefGoogle Scholar
Tran, V. A. and Lee, S.-W., “A prominent anchoring effect on the kinetic control of drug release from mesoporous silica nanoparticles (MSNs),” J. Colloid Interface Sci., vol. 510, pp. 345356, Jan. 2018.CrossRefGoogle Scholar
Suresh, S., Saravanan, P., Jayamoorthy, K., Ananda Kumar, S., and Karthikeyan, S., “Development of silane grafted ZnO core shell nanoparticles loaded diglycidyl epoxy nanocomposites film for antimicrobial applications,” Mater. Sci. Eng. C, vol. 64, pp. 286292, Jul. 2016.CrossRefGoogle ScholarPubMed
Wei, J. et al. , “Silane-Capped ZnO Nanoparticles for Use as the Electron Transport Layer in Inverted Organic Solar Cells,” ACS Nano, vol. 12, no. 6, pp. 55185529, Jun. 2018.CrossRefGoogle ScholarPubMed
Babu, K. S., Reddy, A. R., Reddy, K. V., and Mallika, A. N., “High thermal annealing effect on structural and optical properties of ZnO–SiO2 nanocomposite,” Mater. Sci. Semicond. Process., vol. 27, pp. 643648, Nov. 2014.CrossRefGoogle Scholar
Kulkarni, S. B., Patil, U. M., Salunkhe, R. R., Joshi, S. S., and Lokhande, C. D., “Temperature impact on morphological evolution of ZnO and its consequent effect on physico-chemical properties,” J. Alloys Compd., vol. 509, no. 8, pp. 34863492, Feb. 2011.CrossRefGoogle Scholar
Zhai, J., Tao, X., Pu, Y., Zeng, X.-F., and Chen, J.-F., “Core/shell structured ZnO/SiO2 nanoparticles: Preparation, characterization and photocatalytic property,” Appl. Surf. Sci., vol. 257, no. 2, pp. 393397, Nov. 2010.CrossRefGoogle Scholar
Ali, A. M., Harraz, F. A., Ismail, A. A., Al-Sayari, S. A., Algarni, H., and Al-Sehemi, A. G., “Synthesis of amorphous ZnO–SiO2 nanocomposite with enhanced chemical sensing properties,” Thin Solid Films, vol. 605, pp. 277282, Apr. 2016.CrossRefGoogle Scholar