No CrossRef data available.
Published online by Cambridge University Press: 11 April 2016
We performed first-principles study of electronic properties of FeCrxSe (x=0.0, 0.01, 0.02, 0.04) alloys using the Green’s function-based Korringa-Kohn-Rostoker Atomic Sphere Approximation method within the coherent potential approximation (KKR-ASA-CPA). The KKR-ASA-CPA method is implemented with density function theory (DFT). We find that the excess of Cr into FeSe significantly affects the electronic structure with respect to the parent FeSe. The results have been analyzed in terms of changes in the density of states (DOS), partial DOS, band structures, Fermi surface, bare Sommerfeld constant and the superconducting transition temperature of FeCr0.01Se, FeCr0.02Se and FeCr0.04Se alloys respectively. Our calculations show that calculated Tc for these alloys are close to experimental values, given the nature of approximations used in our calculations.