Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T17:20:40.778Z Has data issue: false hasContentIssue false

Fatigue behavior of nanoscale Mo/W multilayers on flexible substrates

Published online by Cambridge University Press:  03 June 2019

Fang Wang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang110016, China School of Materials Science and Engineering, University of Science and Technology of China, Shenyang110016, China
Xue-Mei Luo*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang110016, China
Dong Wang
Affiliation:
Institute of Materials Engineering and Institute of Micro- and Nanotechnologies MacroNano®, TU Ilmenau, Gustav-Kirchhoff-Str. 5, 98693Ilmenau, Germany
Peter Schaaf
Affiliation:
Institute of Materials Engineering and Institute of Micro- and Nanotechnologies MacroNano®, TU Ilmenau, Gustav-Kirchhoff-Str. 5, 98693Ilmenau, Germany
Guang-Ping Zhang*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang110016, China
*
*Corresponding authors. E-mails: [email protected], [email protected]
*Corresponding authors. E-mails: [email protected], [email protected]
Get access

Abstract

Fatigue properties of Mo/W multilayers with individual layer thickness (λ) of 5, 20, 50 and 100 nm on flexible polyimide substrates were investigated. The experimental results show that the fatigue resistance increases with decreasing λ from 100 nm to 20 nm, and reaches the maximum at λ=20 nm, and then decreases when further decreasing λ. Fatigue cracks of Mo/W multilayers with different λ were found to propagate along columnar grain boundary in the out-of-plane direction and along the boundary of cluster structures. The enhanced fatigue resistance is attributed to the larger cluster inclination angles and the more tortuous in-plane cracking paths.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Freund, L.B., Suresh, S., Thin film materials: stress, defect formation and surface evolution, Cambridge University Press, (2004).CrossRefGoogle Scholar
Comiskey, B., Albert, J.D., Yoshizawa, H., Jacobson, J., Nature. 394 253 (1998).CrossRefGoogle Scholar
NP, P., M, G., EH, J., Science. (296), 280-284 (2002).Google Scholar
Ohring, M., Reliability and failure of electronic materials and devices, Academic Press, (1998).Google Scholar
Park, Y.B., Monig, R., Volkert, C.A., Thin Solid Films. 515 (6), 3253-3258 (2007).CrossRefGoogle Scholar
Rogers, J.A., Bao, Z., Baldwin, K., Dodabalapur, A., Crone, B., Raju, V.R., Kuck, V., Katz, H., Amundson, K., Ewing, J., Drzaic, P., Proceedings of the National Academy of Sciences. 98 (9), 4835-4840 (2001).CrossRefGoogle Scholar
Chawla, K.K., Liaw, P.K., Journal of Materials Science. 14 (9), 2143-2150 (1979).CrossRefGoogle Scholar
Liu, H.S., Zhang, B., Zhang, G.P., Scripta Materialia. 65 (10), 891-894 (2011).CrossRefGoogle Scholar
Tan, H.F., Zhang, B., Luo, X.M., Zhu, X.F., Zhang, G.P., Adv. Eng. Mater., 18 (12), 2003-2009 (2016).CrossRefGoogle Scholar
Wang, Y.C., Liang, F., Tan, H.F., Zhang, B., Zhang, G.P., Materials Science and Engineering: A. 714 43-48 (2018).CrossRefGoogle Scholar
Wang, Y.C., Misra, A., Hoagland, R.G., Scripta Materialia. 54 (9), 1593-1598 (2006).CrossRefGoogle Scholar
Zhu, X.F., Zhang, G.P., J. Phys. D-Appl. Phys., 42 (5), 6 (2009).Google Scholar
Martinez, G., Ramana, C.V., Aip Advances. 7 (12), (2017).CrossRefGoogle Scholar
Singh, J.P., Karabacak, T., Lu, T.M., Wang, G.C., Surface Science. 538 (3), L483-L487 (2003).CrossRefGoogle Scholar
Vullers, F.T.N., Spolenak, R., Thin Solid Films. 577 26-34 (2015).Google Scholar
Kim, B.J., Shin, H.A.S., Jung, S.Y., Cho, Y., Kraft, O., Choi, I.S., Joo, Y.C., Acta Materialia. 61 (9), 3473-3481 (2013).CrossRefGoogle Scholar
Kim, B.J., Shin, H.A.S., Lee, J.H., Yang, T.Y., Haas, T., Gruber, P., Choi, I.S., Kraft, O., Joo, Y.C., Journal of Materials Research. 29 (23), 2827-2834 (2014).CrossRefGoogle Scholar
luo, X.M., nature commun. (2014).Google Scholar
Sim, G.D., Hwangbo, Y., Kim, H.H., Lee, S.B., Vlassak, J.J., Scripta Materialia. 66 (11), 915-918 (2012).CrossRefGoogle Scholar
Wan, H.Y., Luo, X.M., Li, X., Liu, W., Zhang, G.P., Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing. 676 421-426 (2016).Google Scholar
Zhang, G.P., Volkert, C.A., Schwaiger, R., Wellner, P., Arzt, E., Kraft, O., Acta Materialia. 54 (11), 3127-3139 (2006).CrossRefGoogle Scholar
Schwaiger, R., Dehm, G., Kraft, O., Philosophical Magazine. 83 (6), 693-710 (2003).CrossRefGoogle Scholar
Schiotz, J., Jacobsen, K.W., Science. 301 (5638), 1357-1359 (2003).CrossRefGoogle Scholar
Shan, Z.W., Stach, E.A., Wiezorek, J.M.K., Knapp, J.A., Follstaedt, D.M., Mao, S.X., Science. 305 (5684), 654-657 (2004).CrossRefGoogle Scholar
Van Swygenhoven, H., Science. 296 (5565), 66-67 (2002).CrossRefGoogle Scholar
Luo, X.M., Zhang, G.P., Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing. 702 81-86 (2017).Google Scholar
Schwaiger, R., Kraft, O., Scripta Materialia. 41 (8), 823-829 (1999).CrossRefGoogle Scholar
Zhu, X.F., Zhang, B., Gao, J., Zhang, G.P., Scripta Materialia. 60 (3), 178-181 (2009).CrossRefGoogle Scholar
Zhu, X.F., Zhang, G.P., Yan, C., Zhu, S.J., Sun, J., Philosophical Magazine Letters. 90 (6), 413-421 (2010).CrossRefGoogle Scholar
Guo, L.P., Sun, W., Zheng, K.R., Chen, H.J., Liu, B., Cement and Concrete Research. 37 (2), 242-250 (2007).CrossRefGoogle Scholar
Hanlon, T., Tabachnikova, E.D., Suresh, S., International Journal of Fatigue. 27 (10-12), 1147-1158 (2005).CrossRefGoogle Scholar
Zhu, X.F., Zhang, G.P., Tan, J., Liu, Y., Zhu, S.J., Journal of Materials Research. 22 (9), 2478-2482 (2007).CrossRefGoogle Scholar