Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T16:07:37.187Z Has data issue: false hasContentIssue false

Facile Synthesis of Tough Double Network Hydrogel

Published online by Cambridge University Press:  15 February 2016

Jilong Wang
Affiliation:
Department of Mechanical Engineering, Texas Tech University, 2500 Broadway, P.O. Box 43061, Lubbock, TX 79409, U.S.A.
Junhua Wei
Affiliation:
Department of Mechanical Engineering, Texas Tech University, 2500 Broadway, P.O. Box 43061, Lubbock, TX 79409, U.S.A.
Jingjing Qiu*
Affiliation:
Department of Mechanical Engineering, Texas Tech University, 2500 Broadway, P.O. Box 43061, Lubbock, TX 79409, U.S.A.
*
* E-mail: [email protected]; Phone: 806.742.3563; Fax: 506.742.3540.
Get access

Abstract

In this paper, a facile and novel method was developed to fabricate high toughness and stiffness double network hydrogels made of ionical-linked natural hydrogel and synthetic hydrogel. The synthetic hydrogel network is formed firstly, and then the gel is soaked in the ionic solution to build second network to form double network hydrogel with high toughness and stiffness. Two different natural polymers, alginate and chitosan, are employed to build rigid and brittle network and poly(acrylamide) is used as soft network in double network hydrogel. The compressive strength of Calcium alginate/poly(acrylamide) double network hydrogels is increased twice than that of poly(acrylamide) single network hydrogels, and the Ca2+ ionically cross-linked alginate is the key to improve the compressive property of double network hydrogels as a sacrificial bond. However, the chitosan/poly(acrylamide) double network hydrogels exhibit no enhancement of compressive strength comparing to poly(acrylamide) single network hydrogels.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sun, J.-Y., Zhao, X., Illeperuma, W. R., Chaudhuri, O., Oh, K. H., Mooney, D. J., Vlassak, J. J. and Suo, Z.. Nature 489, 133 (2012)Google Scholar
Wang, J., Qiu, J. and Wang, S.. In: Proceedings of ASME 2013 International Mechanical Engineering Congress and Exposition. San Diego, California, USA, November 15–21, 2013. pp. V03BT03A027.Google Scholar
Bao, Y., Ma, J. and Li, N.. Carbohyd. Polym. 84, 76 (2011)Google Scholar
Chang, C., Duan, B., Cai, J. and Zhang, L.. Eur. Polym. J. 46, 92 (2010)Google Scholar
Altunbas, A., Lee, S. J., Rajasekaran, S. A., Schneider, J. P. and Pochan, D. J.. Biomaterials 32, 5906 (2011)Google Scholar
Huey, D. J., Hu, J. C. and Athanasiou, K. A.. Science 338, 917 (2012)CrossRefGoogle Scholar
Chen, T., Buckley, M., Cohen, I., Bonassar, L. and Awad, H. A.. Biomech. Model Mechanobiol. 11, 689 (2012)Google Scholar
Lee, H., Xia, C. G. and Fang, N. X.. Soft Matter 6, 4342 (2010)Google Scholar
Keplinger, C., Sun, J. Y., Foo, C. C., Rothemund, P., Whitesides, G. M. and Suo, Z. G.. Science 341, 984 (2013)CrossRefGoogle Scholar
Shepherd, R. F., Ilievski, F., Choi, W., Morin, S. A., Stokes, A. A., Mazzeo, A. D., Chen, X., Wang, M. and Whitesides, G. M.. P. Natl. Acad. Sci. Usa. 108, 20400 (2011)Google Scholar
Wei, J. H., Wang, J. L., Su, S. H., Wang, S. R., Qiu, J. J., Zhang, Z. H., Christopher, G., Ning, F. D. and Cong, W. L.. RSC Adv. 5, 81324 (2015)Google Scholar
Chen, Q., Zhu, L., Zhao, C., Wang, Q. and Zheng, J.. Adv. Mater. 25, 4171 (2013)Google Scholar
Kitamura, N., Kurokawa, T., Fukui, T., Gong, J. P. and Yasuda, K.. BMC Musculoskelet. Disord. 15, 222 (2014)Google Scholar
Wang, J. L., Wei, J. H., Su, S. H., Qiu, J. J. and Wang, S. R.. J. Mater. Sci. 50, 5458 (2015)CrossRefGoogle Scholar
Wei, J., Wang, J., Su, S., Wang, S. and Qiu, J.. J. Mater. Chem. B 3, 5284 (2015)CrossRefGoogle Scholar
Wei, J. H., Wang, J. L., Su, S. H., Hasan, M., Qiu, J. J. and Wang, S. R.. New J. Chem. 39, 8461 (2015)Google Scholar
Wei, J. H., Su, S. H., Wang, J. L. and Qiu, J. J.. Mater. Chem. Phys. 166, 66 (2015)CrossRefGoogle Scholar
Sun, J. Y., Zhao, X. H., Illeperuma, W. R. K., Chaudhuri, O., Oh, K. H., Mooney, D. J., Vlassak, J. J. and Suo, Z. G.. Nature 489, 133 (2012)Google Scholar
Darnell, M. C., Sun, J. Y., Mehta, M., Johnson, C., Arany, P. R., Suo, Z. G. and Mooney, D. J.. Biomaterials 34, 8042 (2013)CrossRefGoogle Scholar
Li, J. Y., Illeperuma, W. B. K., Suo, Z. G. and Vlassak, J. J.. ACS Macro Lett. 3, 520 (2014)Google Scholar
Yang, C. H., Wang, M. X., Haider, H., Yang, J. H., Sun, J. Y., Chen, Y. M., Zhou, J. X. and Suo, Z. G.. ACS Appl. Mater. 5, 13484 (2013)Google Scholar
Ladet, S., David, L. and Domard, A.. Nature 452, 76 (2008)CrossRefGoogle Scholar
Chen, Q., Zhu, L., Zhao, C., Wang, Q. M. and Zheng, J.. Adv. Mater. 25, 4171 (2013)Google Scholar
Gong, J. P., Katsuyama, Y., Kurokawa, T. and Osada, Y.. Adv. Mater. 15, 1155 (2003)Google Scholar
Fan, J. C., Shi, Z. X., Lian, M., Li, H. and Yin, J.. J. Mater. Chem. A 1, 7433 (2013)Google Scholar
Caykara, T., Demirci, S., Eroglu, M. S. and Guven, O.. Polymer 46, 10750 (2005)Google Scholar