Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T13:00:51.879Z Has data issue: false hasContentIssue false

Fabrication and Characterization of Porous Silica/Carbon Nanotube Composite Insulation

Published online by Cambridge University Press:  12 May 2020

Naoto Shioura
Affiliation:
Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya464-8603 (Japan)
Kazuki Matsushima
Affiliation:
Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya464-8603 (Japan)
Tomoki Osato
Affiliation:
Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya464-8603 (Japan)
Tomonaga Ueno*
Affiliation:
Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya464-8603 (Japan)
Norifumi Isu
Affiliation:
LIXIL Corporation, 2-1-1 Ojima, Koto-ku, Tokyo136-8355 (Japan)
Takeshi Hashimoto
Affiliation:
Meijo Nano Carbon Co., Ltd., 2271-129 Anagahora, Shimoshidami, Moriyama, Nagoya460-0002 (Japan)
Takumi Yana
Affiliation:
Meijo Nano Carbon Co., Ltd., 2271-129 Anagahora, Shimoshidami, Moriyama, Nagoya460-0002 (Japan)
Get access

Abstract

In recent years, the demand for high performance thermal insulations has increased. While foam and aerogels have been researched for high performance thermal insulation, novel material design is required for further improvement. A porous silica has been found to have the potential to form a new thermal insulation material. However, porous silica is a powder and is difficult to form the porous compact. Therefore, we propose a composite insulation of powdered porous silica (p-SiO2), carbon nanotubes (CNTs) and sodium carboxy methyl cellulose (CMC). The fine voids and bulky structure of p-SiO2 greatly suppress gas and solid heat transfer. The composite of CNT can improve the moldability and enhance the mechanical properties. The moldability of thermal insulating materials improved even with the addition of 1 wt% CNT. With the addition of 1 wt% CNT, the increase in thermal conductivity was less than 0.01 W⋅m-1⋅K-1.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Demharter, A., Cryogenics 38 (1), 113-117 (1998).CrossRefGoogle Scholar
Lei, S., Guo, Q, Zhang, D., Shi, J., Liu, L. and Wei, X., J. Appl. Polym. Sci. 117 (6), 3545-3550 (2010).Google Scholar
Papadopoulos, A. M., Energy Build. 37 (1), 77-86 (2005).CrossRefGoogle Scholar
Ostrogorsky, A. G., Glicksman, L. R. and Reitz, D. W., Int. J. Heat Mass Transfer 29 (8), 1169-1176 (1986).CrossRefGoogle Scholar
Fricke, J., Lu, X., Wang, P., Büttner, D. and Heinemann, U., Int. J. Heat Mass Transfer 35 (9), 2305-2309 (1992).Google Scholar
Wei, G., Wang, L., Chen, L., Du, X., Xu, C. and Zhang, X., Int. J. Thermophys. 36, 2953-2966 (2015).Google Scholar
Bi, C. and Tang, G. H., Int. J. Heat Mass Transfer 64, 452-456 (2013).CrossRefGoogle Scholar
Xie, T., He, Y.-L. and Hu, Z.-J., Int. J. Heat Mass Transfer 58 (1-2), 540-552 (2013).CrossRefGoogle Scholar
Zu, G., Kanamori, K., Maeno, A., Kaji, H., and Nakanishi, K., Angew. Chem. 130, 9870-9875 (2018).CrossRefGoogle Scholar
Yu, Z. L., Yang, N., Kalkavoura, V. A., Qin, B., Ma, Z.-Y., Xing, W.-Y., Qiao, C., Bergstrom, L., Atonietti, M., and Yu, S-H., Angew. Chem. 130, 4628-4632 (2018).CrossRefGoogle Scholar
Mendes, A. L., Silva, R. F., Duraes, L., J. Mater. Chem. A. 6, 1340-1369 (2018).CrossRefGoogle Scholar
Lu, X., Arduini-Schuster, M. C., Kuhn, J., Nilsson, O., Fricke, J. and Pekala, R. W., Science 255 (5047), 971-972 (1992).CrossRefGoogle Scholar
Guo, H., Meador, M. A. B., McCorkle, L. S., Scheiman, D. A., McCrone, J. D., and Wilkewitz, B., RSC Advances 6, 26055 (2016).CrossRefGoogle Scholar
Sabri, F., Marchetta, J. G., Faysal, K. M. R., Brock, A. and Roan, E., Advances in Materials Science and Engineering, 796356 (2014).Google Scholar
Sabri, F., Marchetta, J., Smith, K. M., Acta Astronautica 91, 173-179 (2013).CrossRefGoogle Scholar
Marchetta, J. G., Sabari, F., Williams, D. S., and Pumroy, D. W., J Spacecraft Rockets 55 (4), 1007-1013 (2018).CrossRefGoogle Scholar
Abe, I., Sato, K., Abe, H., and Naito, M., Adv. Powder Technol. 19 (4), 311-320 (2008).CrossRefGoogle Scholar
Abe, H., Abe, I., Sato, K., and Naito, M., J. Am. Ceram. Soc. 88 (5), 1359-1361 (2005).CrossRefGoogle Scholar
Yuan, B., Ding, S., Wang, D., Wang, G., and Li, H., Mater. Lett. 75, 204-206 (2012).CrossRefGoogle Scholar
Hrubesh, L. W. and Pekala, R. W., J. Mater. Res. 9 (3), 731-738 (1994).CrossRefGoogle Scholar
Taft, E. A. and Philipp, H. R., Phys. Rev. 138 (1A), A197-A202 (1965).CrossRefGoogle Scholar