Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T12:48:35.070Z Has data issue: false hasContentIssue false

Evaluation of N,N-Dimethylformamide as Corrosion Inhibitor on API 5L X70 using 3% NaCl

Published online by Cambridge University Press:  16 July 2019

Pablo Martínez Jiménez
Affiliation:
Departamento de Ingeniería Metalúrgica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
Araceli Espinoza Vázquez*
Affiliation:
Departamento de Ingeniería Metalúrgica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
Francisco Javier Rodríguez Gómez
Affiliation:
Departamento de Ingeniería Metalúrgica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
*
*Corresponding author: [email protected]
Get access

Abstract

Dimethylformamide (DMF) has been tested as corrosion inhibitor in a metallic material like API 5LX70 in a corrosive solution of 3% of NaCl and using electrochemical technique as electrochemical impedance spectroscopy. The results showed that 20 ppm is the best concentration to protect the metallic surface of API 5L X70 with η∼ 94%. Hydrodynamic conditions (100 and 1000 rpm) demonstrated that the DMF at different concentration afforded moderate protection against corrosion with inhibition efficiency ∼70%. Finally, the adsorption of this compound follows the Langmuir isotherm with a chemisorption-physisorption process.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Jiang, X., Zheng, Y.G., Ke, W., Corros. Sci. 47, 2636 (2005).CrossRefGoogle Scholar
Paolinelli, L.D., Pérez, T., Simison, S.N., Mat. Chem. Phys. 126, 938 (2011).CrossRefGoogle Scholar
Ghareba, S., Omanovic, S., Corros. Sci. 53, 3805 (2011).CrossRefGoogle Scholar
Xu, J., Hua, L., Wang, W., Tang, L., Cui, L., Water Science and Engineering, 6(3), 354 (2013)Google Scholar
Boumhara, K., Tabyaoui, M., Jama, C., Bentiss, F., J. Ind. and Eng. Chem. 29, 146 (2015).CrossRefGoogle Scholar
Zhang, S., Tao, Z., Li, W., Hou, B., Appl. Surf. Sci. 255, 6757 (2009).CrossRefGoogle Scholar
El-Naggar, M.M., Corros. Sci., 49(5), 2226 (2007).CrossRefGoogle Scholar
Ebenso, E.E., Mat. Chem. Phys. 79(1), 58 (2003).CrossRefGoogle Scholar
Prabhu, R.A., et al., Corros. Sci. 50(12), 3356 (2008).CrossRefGoogle Scholar
Álvarez-Bustamante, R., Electrochim. Act. 54(23), 5393 (2009).CrossRefGoogle Scholar
Barmatov, E., Hughes, T., Nag, M., Corros. Sci. 92, 85 (2015).CrossRefGoogle Scholar
Jiang, X., Zheng, Y.G., Ke, W., Corros. Sci. 47, 2636 (2005).CrossRefGoogle Scholar
Olvera-Martínez, M. E., Mendoza-Flores, J., Genesca, J., Loss Prev, J.. Proc. 35, 19 (2015).Google Scholar
Redlich, C., Beckett, W.S., Sparer, J., Barwick, K.W., Riely, C.A., Miller, H., Sigal, S.L., Shalat, S.L., Ann, S. L.. Intern. Med. 108 (5), 680 (1988).Google Scholar
Li, M.J., Zeng, T., Chem. Biol. Int. 298, 129 (2019).CrossRefGoogle Scholar
Zhang, X., Jiang, H., Shen, J., Zhang, Y., Gu, Y., Xiao, J., Lian, Y., Ecotox. Environ. Safe. 171, 347 (2019).CrossRefGoogle Scholar
Zhang, Q., Chen, C., J. Saudi Chem. Soc. 20, 114 (2016).CrossRefGoogle Scholar
Espinoza, A., Rodríguez, F. J., Negrón, G. E., Angeles, D., González, R., Int. J. Electrochem. Sci. 13, 12294 (2018).CrossRefGoogle Scholar
Srikanth, A.P., Lavanya, A., Nanjundan, S., Rajendran, N., Appl. Surf. Sci. 253, 1810 (2006).CrossRefGoogle Scholar
Messali, M., Larouj, M., Lgaz, H., Rezki, N., Al-Blewi, F.F., Aouad, M.R., Chaouiki, A., Salghi, R., Ill-Min Chung, J. Mol. Struct. 1168, 39 (2018).CrossRefGoogle Scholar
Haruna, K., Obot, I.B., Ankah, N.K., Sorour, A.A., Saleh, T.A., J. Mol. Liq. 264, 515 (2018).CrossRefGoogle Scholar
Olvera, M. E., Mendoza, J., Genesca, J., Loss Prev, J.. Proc. Ind. 35, 19 (2015).Google Scholar
Singh, A. K., Thakur, S., Pani, B. and Singh, G., New J.Chem. 42, 2113 (2018).CrossRefGoogle Scholar
Tao, Z., He, W., Wang, S., Zhang, S., Zhou, G., Corros. Sci. 60, 205 (2012).CrossRefGoogle Scholar
Zarrouk, B. Hammouti, H. Zarrok, M. Bouachrine, K.F. Khaled, S.Al-Deyab, S., Int J. Electrochem. Sci. 7, 89 (2012).Google Scholar
Xu, F., Duan, J., Zhang, S., Hou, B., Mat. Lett. 62, 4072 (2008).CrossRefGoogle Scholar
El-Sayed, M., Int J. Electrochem. Sci. 7, 1482 (2012).Google Scholar
Ahmad, Y.H., Mogoda, A.S., Gadallh, A.G., Int. J. Electrochem. Sci. 7, 4929 (2012).Google Scholar
Pavithra, M.K., Venkatesha, T.V., Punith, M.K., Tondan, H.C., Corros. Sci. 60, 104 (2012).CrossRefGoogle Scholar
Chen, W., Qun Luo, H., Bing, L.N., Corros. Sci. 53, 3356(2011).CrossRefGoogle Scholar