Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T19:29:30.775Z Has data issue: false hasContentIssue false

Enhanced thermal expansion by micro-displacement amplifying mechanical metamaterial

Published online by Cambridge University Press:  26 February 2018

Lingling Wu
Affiliation:
State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing100084, China
Bo Li*
Affiliation:
Advanced Materials Institute, Shenzhen Graduate School, Tsinghua University, Shenzhen, China
Ji Zhou*
Affiliation:
State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing100084, China
*
*Author to whom correspondence should be addressed. Electronic mail: [email protected]
* Author to whom correspondence should be addressed. Electronic mail: [email protected]
Get access

Abstract

It is important to achieve materials with large coefficient of thermal expansion in science and engineering applications. In this paper, we propose an experimentally-validated metamaterial approach to amplify the thermal expansion of materials based on the guiding principles of flexible hinges and displacement amplification mechanism. The thermal expansion property of the designed metamaterial is demonstrated by simulation and experiment with a temperature increase of 245 K for the two-dimensional sample. Both experimental and simulation results display amplified thermal expansion property of the metamaterial. The effective coefficient of thermal expansion of the metamaterials is demonstrated to be dependent on the size parameters of the structure, which means by appropriately tailoring these parameters, the thermal expansion of materials could be amplified with different amplification factor. This work provides an important method to control the thermal expansion coefficient of materials and could be applied in various industry domain.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lakes, R., Appl. Phys. Lett. 90, 221905 (2007).Google Scholar
Ito, T., Suganuma, T., and Wakashima, K., Mater. Sci. Lett. 18, 13631365 (1999).Google Scholar
Ha, C. S., Hestekin, E., Li, J., Plesha, M. E., and Lakes, R. S., Phys. Status Solidi (B) 252, 14311434 (2015).Google Scholar
Grima, J. N., Ellul, B., Gatt, R., and Attard, D., Phys. Status Solidi (B). 250, 20512056 (2013).Google Scholar
Grima, J. N., Oliveri, L., Ellul, B., Gatt, R., Attard, D., Cicala, G., and Recca, G., Phys. Status Solidi RRL. 4, 133135 (2010).Google Scholar
Kelly, Compos. Sci. Tech. 65, 4759 (2005).Google Scholar
Beran, M., Statistical continuum theories. New York: Wiley (1968).Google Scholar
Bruggeman, D. A. G., Ann. Phys. 24, 636679 (1935).Google Scholar
Berryman, J. G. & Milton, G. W., J. Phys. D. 21, 8794 (1988).Google Scholar
Pecullan, S., Gibiansky, L. V., Torquato, S., J. Mech. & Phys. Solids. 47, 15091542 (1999).Google Scholar
Paros, J. M., and Weisbord, L., Mach. Des. 37, 151156 (1965).Google Scholar
Howell, L. L., and Midha, A., J. Mech. Design. 116, 280290 (1994).Google Scholar
Howell, L. L., and Midha, A., J. Mech. Design. 118, 121125 (1996).Google Scholar
Lobontiu, N., Paine, J. S. N., Garcia, E., and Goldfarb, M., J. Mech. Design. 123, 346352 (2001).Google Scholar
Jensen, D., and Howell, L. L., Mech. Mach. Theory. 37, 461476 (2002).Google Scholar
Carricato, M., and Parenti-Castelli, V., J. Mech. Design. 123, 4350 (2001).Google Scholar
Smith, S. T., Chetwynd, D. G., and Bowen, D. K., J. Phys. E-Scientific Instruments. 20, 977983 (1987).Google Scholar
Furukawa, E., Mizuno, M., and Terada, K., J. Jpn. S. Prec. Eng. 57, 13631368 (1991).Google Scholar
Choi, S. B., Han, S. S., Han, Y. M., and Thompson, B. S., Mech. Mach. Theory. 42, 11841198 (2007).Google Scholar
King, T., and Xu, W., Robot. & Auton. Syst. 19, 189197 (1995).Google Scholar
Du, H. J., Lau, G. K., Lim, M. K., and Qui, J. H., Smart Mater. & Struct. 9, 788800 (2000).Google Scholar
Bacher, J. P., Joseph, C., and Clavel, R., Ind. Rob. 29, 349353 (2002).Google Scholar
Zettl, , Szyszkowski, W., and Zhang, W. J., J. Mech. Design 127, 782787(2005).CrossRefGoogle Scholar
Supplementary material: Image

Wu et al. supplementary material

Wu et al. supplementary material 1

Download Wu et al. supplementary material(Image)
Image 8.6 MB
Supplementary material: Image

Wu et al. supplementary material

Wu et al. supplementary material 2

Download Wu et al. supplementary material(Image)
Image 402.4 KB