Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T13:05:40.456Z Has data issue: false hasContentIssue false

Elucidation of the growth mechanism of MoS2 during the CVD process

Published online by Cambridge University Press:  26 December 2018

Sajeevi S Withanage*
Affiliation:
Department of Physics, University of Central Florida, Orlando, FL32816, United States NanoScience Technology Center, University of Central Florida, Orlando, FL32816, United States
Mike Lopez
Affiliation:
NanoScience Technology Center, University of Central Florida, Orlando, FL32816, United States
Wasee Sameen
Affiliation:
NanoScience Technology Center, University of Central Florida, Orlando, FL32816, United States
Vanessa Charles
Affiliation:
NanoScience Technology Center, University of Central Florida, Orlando, FL32816, United States
Saiful I Khondaker
Affiliation:
Department of Physics, University of Central Florida, Orlando, FL32816, United States NanoScience Technology Center, University of Central Florida, Orlando, FL32816, United States Department of Electrical & Computer Engineering, University of Central Florida, Orlando, FL32816, United States
*
Get access

Abstract

Chemical vapor deposition (CVD) growth of two-dimensional molybdenum disulfide (MoS2) using molybdenum trioxide (MoO3) and sulfur (S) powder often results in intermediate molybdenum oxy-sulfide (MoOS2) species along with MoS2 due to a lack of control over the vapor pressure required for the clean growth. Much effort has been devoted in understanding and controlling of these intermediate MoOS2 specifies. Here, we show that with a second step sulfurization at moderate temperatures, these MoOS2 crystals can be transformed to monolayer MoS2 crystals. Scanning electron microscopy, Raman and photoluminescence spectroscopy and atomic force microscopy characterization carried out before and after re-sulfurization confirm the monolayer MoS2 growth via this route. This study shows that MoOS2 formed at the intermediate state can be successfully recycled to MoS2.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Perea-López, N., Elías, A. L., Berkdemir, A., Castro-Beltran, A., Gutiérrez, H. R., Feng, S., Lv, R., Hayashi, T., López-Urías, F., Ghosh, S., Muchharla, B., Talapatra, S., Terrones, H. and Terrones, M., Adv Funct Mater 23 (44), 5511-5517 (2013).CrossRefGoogle Scholar
Gutiérrez, H. R., Perea-López, N., Elías, A. L., Berkdemir, A., Wang, B., Lv, R., López-Urías, F., Crespi, V. H., Terrones, H. and Terrones, M., Nano Lett 13 (8), 3447-3454 (2013).CrossRefGoogle Scholar
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. and Kis, A., Nat Nanotechnol 6 (3), 147-150 (2011).CrossRefGoogle Scholar
Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A. and Kis, A., Nature Nanotechnology 8 (7), 497-501 (2013).CrossRefGoogle Scholar
Salehzadeh, O., Tran, N. H., Liu, X., Shih, I. and Mi, Z., Nano Lett 14 (7), 4125-4130 (2014).CrossRefGoogle Scholar
Sarkar, D., Liu, W., Xie, X. J., Anselmo, A. C., Mitragotri, S. and Banerjee, K., Acs Nano 8 (4), 3992-4003 (2014).CrossRefGoogle Scholar
Tsai, M. L., Su, S. H., Chang, J. K., Tsai, D. S., Chen, C. H., Wu, C. I., Li, L. J., Chen, L. J. and He, J. H., Acs Nano 8 (8), 8317-8322 (2014).CrossRefGoogle Scholar
Li, M., Chen, J.-S., Routh, P. K., Zahl, P., Nam, C.-Y. and Cotlet, M., Adv Funct Mater 28 (29), 1707558 (2018).CrossRefGoogle Scholar
Lin, Y.-C., Zhang, W., Huang, J.-K., Liu, K.-K., Lee, Y.-H., Liang, C.-T., Chu, C.-W. and Li, L.-J., Nanoscale 4 (20), 6637-6641 (2012).CrossRefGoogle ScholarPubMed
Yore, A. E., Smithe, K. K. H., Crumrine, W., Miller, A., Tuck, J. A., Redd, B., Pop, E., Wang, B. and Newaz, A. K. M., The Journal of Physical Chemistry C 120 (42), 24080-24087 (2016).CrossRefGoogle Scholar
Li, X. L. and Li, Y. D., Chem-Eur J 9 (12), 2726-2731 (2003).CrossRefGoogle Scholar
Pondick, J. V., Woods, J. M., Xing, J., Zhou, Y. and Cha, J. J., ACS Applied Nano Materials 1 (10), 5655-5661 (2018).CrossRefGoogle Scholar
Cain, J. D., Shi, F. Y., Wu, J. S. and Dravid, V. P., Acs Nano 10 (5), 5440-5445 (2016).CrossRefGoogle Scholar
Zhou, H., Wang, C., Shaw, J. C., Cheng, R., Chen, Y., Huang, X., Liu, Y., Weiss, N. O., Lin, Z., Huang, Y. and Duan, X., Nano Lett 15 (1), 709-713 (2015).CrossRefGoogle Scholar
Zhou, D., Shu, H. B., Hu, C. L., Jiang, L., Liang, P. and Chen, X. S., Cryst Growth Des 18 (2), 1012-1019 (2018).CrossRefGoogle Scholar
Senthilkumar, V., Tam, L. C., Kim, Y. S., Sim, Y. M., Seong, M. J. and Jang, J. I., Nano Res 7 (12), 1759-1768 (2014).CrossRefGoogle Scholar
Lee, C., Yan, H., Brus, L. E., Heinz, T. F., Hone, J. and Ryu, S., Acs Nano 4 (5), 2695-2700 (2010).CrossRefGoogle Scholar
Zhang, J., Yu, H., Chen, W., Tian, X. Z., Liu, D. H., Cheng, M., Xie, G. B., Yang, W., Yang, R., Bai, X. D., Shi, D. X. and Zhang, G. Y., Acs Nano 8 (6), 6024-6030 (2014).CrossRefGoogle Scholar
Sanne, A., Ghosh, R., Rai, A., Yogeesh, M. N., Shin, S. H., Sharma, A., Jarvis, K., Mathew, L., Rao, R., Akinwande, D. and Banerjee, S., Nano Lett 15 (8), 5039-5045 (2015).CrossRefGoogle Scholar
Mak, K. F., Lee, C., Hone, J., Shan, J. and Heinz, T. F., Phys Rev Lett 105 (13), 136805 (2010).CrossRefGoogle Scholar
Choudhary, N., Islam, M. R., Kang, N., Tetard, L., Jung, Y. and Khondaker, S. I., J Phys-Condens Mat 28 (36), 364002 (2016).CrossRefGoogle Scholar