Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T06:14:40.040Z Has data issue: false hasContentIssue false

Electrospun CoFe2O4 nanofibers as bifunctional nanocatalysts for the oxygen evolution and oxygen reduction reactions in alkaline media

Published online by Cambridge University Press:  19 October 2020

P.C. Cintron-Nuñez
Affiliation:
Sustentabilidad de los Recursos Naturales y Energía, Cinvestav Unidad Saltillo, Av. Industrial Metalúrgica, 1062, C.P. 25900, Ramos Arizpe, Coahuila, México.
B. Escobar-Morales
Affiliation:
CONACYT, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, Mérida, Yucatán, C.P. 97200, México.
J. Escorcia-Garcia
Affiliation:
CONACYT, Cinvestav Unidad Saltillo, Ingeniería en Cerámica, México.
F.J. Rodríguez-Varela
Affiliation:
Sustentabilidad de los Recursos Naturales y Energía, Cinvestav Unidad Saltillo, Av. Industrial Metalúrgica, 1062, C.P. 25900, Ramos Arizpe, Coahuila, México.
I.L. Alonso-Lemus*
Affiliation:
CONACYT, Cinvestav Unidad Saltillo, Sustentabilidad de los Recursos Naturales y Energía, México.
*
*Email corresponding author: [email protected]
Get access

Abstract

Non-noble metal bifunctional nanocatalysts based on CoFe2O4/C were synthetized by the electrospinning method and evaluated for the Oxygen Evolution Reaction (OER) and the Oxygen Reduction Reaction (ORR). The effect of annealing at different temperatures (T=300, 600 and 900°C) on their morphological and structural features was characterized by XRD, EDS, Raman, FESEM, HRTEM and XPS. The nanofibers annealed at 300 °C (CoFe2O4-300) showed a cubic spinel structure and an average diameter of 42 nm. The CoFe2O4-300/C nanocatalyst demonstrated the highest catalytic activity towards the OER, outperforming the benchmark commercial 20 wt. % Pt/C. Meanwhile all CoFe2O4-based nanocatalysts showed fair catalytic activity for the ORR (Eonset ≈ 0.801 V/RHE, n≈ 3.56, %HO2- ≈ 21-39). In addition, the CoFe2O4/C nanocatalysts demonstrated a higher electrochemical stability than Pt/C for both the ORR and the OER.

Type
Articles
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Tang, C., Wang, H-S, Wang, H-F, Zhang, Q., Tian, G-L, Nie, J-Q and Wei, F., Adv. Mater 27, 4516-4522 (2015).Google ScholarPubMed
Jahan, M., Liu, Z., K. and Loh, P., Adv. Funct. Mater. 23, 5363-5372 (2013).CrossRefGoogle Scholar
Zadick, A., Dubau, L., Sergent, N., Berthomé, G., Chatenet, M., ACS Catal. 5, 4819-4824 (2015).CrossRefGoogle Scholar
Zhang, Y., Zhang, H., Ma, Y., Cheng, J., Zhong, H., Song, S., Ma, H., J. Power Sources 195(1), 142-145 (2010).CrossRefGoogle Scholar
Wang, H., Yang, Y., Liang, Y., Zheng, G., Li, Y., Cui, Y., Dai, H., Energy Environ. Sci. 5, 7931-7935 (2012).CrossRefGoogle Scholar
Kurtan, U., Topkaya, R. and Baykal, A.. Mater. Res. Bull. 48, 48894895 (2013).CrossRefGoogle Scholar
Du, Y. K., Yang, P., Mou, Z.G., Hua, N.P. and Jiang, L.. J. Appl. Polym. Sci. 99, 2326 (2006).CrossRefGoogle Scholar
Liu, N., Zhou, P., Du, P., Tanguturi, R.G., Qi, Y., Zhang, M. and Zhang, T.. CrystEngComm 22, 18391847 (2020).CrossRefGoogle Scholar
Liu, Y., Zhang, Y., Feng, J.D., Li, C.F., Shi, J. and Xiong, R.. J. Exp. Nanosci. 4, 159168 (2009).CrossRefGoogle Scholar
Yu, T., Shen, Z.X., Shi, Y. and Ding, J., J. Phys. Condens. Matter 14, L613-l618, (2002).CrossRefGoogle Scholar
Ibrahim, K.B., Tsai, M-C, Chala, S.A., Berihun, M.K., Kahsay, A.W., Berhe, T.A., Su, W-N, Hwang, B-J, J Chin Chem Soc.66, 829865 (2019).CrossRefGoogle Scholar
Baraliya, J.D. and Joshi, H.H., Vib. Spectrosc. 74, 75-80 (2014)CrossRefGoogle Scholar
To Loan, N.T., Hien Lan, N. T., Thuy Hang, N. T., Quang Hai, N., Tu Anh, D. T., Thi Hau, V., Van Tan, L. and Van Tran, T.. Processes 7, 885 (2019).CrossRefGoogle Scholar
Liu, N., Zhou, P., Du, P., Tanguturi, R.G., Qi, Y., Zhang, M. and Zhanga, T.Google Scholar
Wu, Y.1, Jiang, P., Jiang, M., Wang, T-W, Guo, C-F, Xie, S-S and Wang, Z-L, Nanotechnology 20, 305602 (10pp), (2009).CrossRefGoogle Scholar
Liang, Y., Li, Y., Wang, H., Zhou, J., Wang, J., Regier, T. and Dai, H.. Nat. Mater. 10, 780-786 (2011).Google Scholar
Siller-Ceniceros, A. A., Sánchez-Castro, M. E., Morales-Acosta, D., Torres-Lubian, J. R., Martínez G, E.. and Rodríguez-Varela, F. J.. Appl. Catal. B Environ. 209, 455467 (2017).CrossRefGoogle Scholar
Wang, J., Zhang, S., Zhong, H., Alonso-Vante, N., Li, D. 1, Tang, P. and Feng, Y.. Surfaces 2, 229-240 (2019).CrossRefGoogle ScholarPubMed
Supplementary material: File

Cintron-Nuñez et al. supplementary material

Cintron-Nuñez et al. supplementary material

Download Cintron-Nuñez et al. supplementary material(File)
File 873 KB