Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T03:26:58.591Z Has data issue: false hasContentIssue false

Electronic structure study of new family of high-Tc Fe-superconductors based on BaFe2As2 in presence of dopants Rh and Pd.

Published online by Cambridge University Press:  04 November 2019

Ronald Columbié-Leyva
Affiliation:
Instituto de Investigación en Materiales, UNAM, AP 70-360, 04510, CDMX, Mexico.
Jacques Soullard
Affiliation:
Instituto de Física, UNAM, AP 20-364, 010000CDMX, México.
Ilya G. Kaplan*
Affiliation:
Instituto de Investigación en Materiales, UNAM, AP 70-360, 04510, CDMX, Mexico.
*
Get access

Abstract

The superconductivity has a long history. One of the most recent discoveries is the superconductivity in the Fe- based family with anti- ferromagnetic state at ambient temperature. In this type of material, the transition to the superconductivity state was found in presence of different dopants. In this report we present the results of calculations of the cluster representing Ba4Fe5As8 in presence of Rh and Pd as dopants. The methodology of Embedded Cluster Method at the MP2 electron correlation level was employed. The population analysis showed two main features: the independence of charge density transfer from the spin density transfer and, the presence of orbitals with electron density but without spin density. The observed properties correspond to the RVB mechanism for the superconductivity transition proposed by Anderson for cuprates. This confirms our conclusions obtained in the same material doped by Co and Ni.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kamihara, Y., Watanabe, T., Hirano, M., and Hosono, H., J. Am. Chem. Soc. 130, 3296 (2008).CrossRefGoogle Scholar
Takahashi, H., Igawa, K., Arii, K., Kamihara, Y., Hirano, M., and Hosono, H., Nature (London) 453, 376 (2008).CrossRefGoogle Scholar
Stewart, R.G., Rev. Mod. Phys. 83, 1589 (2011).CrossRefGoogle Scholar
Sefat, A.S., Jin, R., McGuire, M.A., Sales, B.C., Singh, D.J., and Mandrus, D., Phys. Rev. Lett. 101, 117004 (2008).CrossRefGoogle Scholar
Sefat, A.S., Singh, D.J., Van Bebber, L.H., Mozharivskyj, Y., McGuire, M.A., Jin, R., Sales, B.C., Keppens, V., and Mandrus, D., Phys. Rev. B 79, 224524 (2009).CrossRefGoogle Scholar
Sefat, A.S., Marty, K., Christianson, A.D., Saparov, B., McGuire, M.A., Lumsden, M. D., Tian, W., and Sales, B. C., Phys. Rev. B 85, 024503 (2012).CrossRefGoogle Scholar
Texier, Y., Laplace, Y., Mendels, P., Park, J.T., Friemel, G., Sun, D.L., Inosov, D.S., Lin, C.T., and Bobroff, J., Eur. Phys. Lett. 99, 17002 (2012).CrossRefGoogle Scholar
Canfield, P.C., Bud’ko, S.L., Ni, N., Yan, J.Q., and Kracher, A., Phys. Rev. B 80, 060501 (2009).CrossRefGoogle Scholar
Mun, E.D., Bud’ko, S.L., Ni, N., Thaler, A.N., and Canfield, P.C., Phys. Rev. B 80, 054517 (2009).CrossRefGoogle Scholar
Singh, D.J. and Du, M.H., Phys. Rev. Lett. 100, 237003 (2008).CrossRefGoogle Scholar
Mazin, I.I., Singh, D.J., Johannes, M.D., and Du, M.H., Phys. Rev. Lett. 101, 057003 (2008).CrossRefGoogle Scholar
Wang, F., Lee, D.-H., Science 332, 200 (2011).CrossRefGoogle Scholar
Norman, M.R., Science 332, 196 (2011).CrossRefGoogle Scholar
Mazin, I.I., Singh, D.J., Johannes, M.D., and Du, M.H., Phys. Rev. Lett. 101, 057003 (2008).CrossRefGoogle Scholar
Lee, P.A., Nagaosa, N., and Wen, X.-G., Rev. Mod. Phys. 78, 17 (2006).CrossRefGoogle Scholar
Si, Q. and Abrahams, E., Phys. Rev. Lett. 101, 076401 (2008).CrossRefGoogle Scholar
Chen, W.-Q., Yang, K.-Y., Zhou, Y., and Hang, F.-C., Phys. Rev. Lett. 102, 047006 (2009).CrossRefGoogle Scholar
Soullard, J., Pérez-Enriquez, R., and Kaplan, I., Phys. Rev. B 91 184517 (2015).CrossRefGoogle Scholar
Soullard, J. and Kaplan, I., J. Supercond. Nov. Magn. 29 3147 (2016).CrossRefGoogle Scholar
Kaplan, I.G., Soullard, J., Hernandez-Cobos, J., and Pandey, R., J. Phys.: Condens. Matter 11, 1049 (1999).Google Scholar
Kaplan, I.G., Hernandez-Cobos, J., and Soullard, J., Quantum Systems in Chemistry and Physics, 143158 Kluwer Academic, Dordrecht (2000).Google Scholar
Anderson, P.W., Science 235, 1196 (1987).CrossRefGoogle Scholar
Anderson, P.W., Baskaran, G., Zou, Z., and Hsu, T., Phys. Rev. Lett. 58, 2790 (1987).CrossRefGoogle Scholar
Kaplan, I.G., “Intermolecular Interaction: Physical Picture, Computational Methods and Model Potentials”, John Wiley & Sons, Chichester, England, 2006, p. 367.Google Scholar
Ni, N., Thaler, A., Kracher, A., Yan, J.Q., Bud’ko, S.L., and Canfield, P.C., Phys. Rev. B , 80, 24511 (2009).CrossRefGoogle Scholar
Rotter, M., Tegel, M., Johrendt, D., Schellenberg, I., Hermes, W., and Pöttgen, R., Phys. Rev. B 78, 020503 (2008).CrossRefGoogle Scholar
Frisch, M.J., et al., Gaussian 16, Revision A.03 Gaussian, Inc., Wallingford CT (2016).Google Scholar
Küchle, W., Dolg, M., Stoll, H., and Preuss, H., J. Chem. Phys., 100, 7535 (1994).CrossRefGoogle Scholar
Dolg, M., Stoll, H., Savin, A., and Preuss, H., Theo. Chem. Acc., 75, 173 (1989).CrossRefGoogle Scholar