Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T14:59:01.888Z Has data issue: false hasContentIssue false

Electrodeposition of poly and nanocrystalline Cu-In-Se absorbers for optoelectronic devices

Published online by Cambridge University Press:  19 July 2019

Shalini Menezes*
Affiliation:
InterPhases Solar, Moorpark, CA, USA
Anura P. Samantilleke
Affiliation:
Universidade de Minho, Braga, Portugal
Sharmila J. Menezes*
Affiliation:
InterPhases Solar, Moorpark, CA, USA
Yi Mo
Affiliation:
InterPhases Solar, Moorpark, CA, USA
David S. Albin
Affiliation:
National Renewable Energy Laboratories, Golden, CO, USA
*
Get access

Abstract

Coupling semiconductors with electrochemical processes can lead to unusual materials, and attractive, practical device configurations. This work examines the reaction mechanism for single-step electrodeposition approach that creates device quality copper-indium-selenide (CISe) films with either polycrystalline or nanocrystalline morphologies on Cu and steel foils, respectively. The polycrystalline CISe film grows from In3+/Se4+ solution on Cu foil as Cu→ CuxSe→ CuInSe2; it may be used in standard planar pn devices. The nanocrystalline CISe film grown from Cu+/In3+/Se4+ solution follows the CuSe(In)→ CuInSe2→ CuIn3Se5 sequence. The latter approach leads to naturally ordered, space-filling nanocrystals, comprising interconnected 3-dimensional network of sharp, abrupt, p-CISe/n-CISe bulk homojunctions with extraordinary electro-optical attributes. Sandwiching these films between band-aligned contact electrodes can lead to high performance third generation devices for solar cells, light emitting diodes or photoelectrodes for fuel cells. Both approaches produce self-stabilized CISe absorbers that avoid recrystallization steps and can be roll-to-roll processed in simple flexible thin-film form factor for easy scale-up.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Li, Y., Shaikh, S. S. and Menezes, S., Thin Solid Films, 524, 20-25 (2012).CrossRefGoogle Scholar
Menezes, S, Kessler, J., Schmid, D., Schock, H. W., Matson, R. J., Solar Energy Mat & Cells, 325, (1995).Google Scholar
Zhang, S. B., Wei, S. H., Zunger, A. and Katayama-Yoshida, H., Phys. Rev. B 57, 9642-9656 (1998).CrossRefGoogle Scholar
Menezes, S. and Samantilleke, A., Scientific Reports, https://rdcu.be/3AD7 (2018).Google Scholar
Mishra, K. K. and Rajeshwar, K., J. Electroanal. Chem, 271, 279 (1989).CrossRefGoogle Scholar
Pottier, D. and Maurin, G., J. Appl. Electrochem. 19, 361 (1989).CrossRefGoogle Scholar
Massaccesi, S., Rouquette-Sanchez, S. and Vedel, J., J. Electrochem. Soc, 140, 2540 (1993).CrossRefGoogle Scholar
Froment, M., Bernard, M. C., Cortes, R., Mokili, B. and Lincot, D., J. Electrochem. Soc, 142 (1995) 2642.CrossRefGoogle Scholar
Thouin, L. and Vedel, J., J. Electrochem. Soc. 142, 2996 (1995).CrossRefGoogle Scholar
Menezes, S., Mat. Res. Soc. Symp. Proc, Francisco, S., 426, 189 (1996).CrossRefGoogle Scholar
X-ray Diffraction Files, JCPDS ID#21-1016.Google Scholar
Contreras, M., Egaas, B., Dippo, P., Web, J., Granata, J., Ramanathan, K., Asher, S., Swartzlander, A. and Noufi, R., 26th IEEE Conference Proceedings, Anaheim (1997).Google Scholar
Raguse, J. M., Muzzillo, C. P., Sites, J. R. and Mansfield, L., IEEE J. Photovoltaics, 7(1), 303-306 (2017).CrossRefGoogle Scholar