Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T03:08:05.088Z Has data issue: false hasContentIssue false

Effects of Long-Time Current Annealing to the Hysteresis in CVD Graphene on SiO2

Published online by Cambridge University Press:  02 October 2019

U. Kushan Wijewardena
Affiliation:
Department of Physics & Astronomy, Georgia State University, Atlanta, GA30303, USA
Tharanga Nanayakkara
Affiliation:
Department of Physics & Astronomy, Georgia State University, Atlanta, GA30303, USA
Rasanga Samaraweera
Affiliation:
Department of Physics & Astronomy, Georgia State University, Atlanta, GA30303, USA
Sajith Withanage
Affiliation:
Department of Physics & Astronomy, Georgia State University, Atlanta, GA30303, USA
Annika Kriisa
Affiliation:
Department of Physics & Astronomy, Georgia State University, Atlanta, GA30303, USA
Ramesh G. Mani*
Affiliation:
Department of Physics & Astronomy, Georgia State University, Atlanta, GA30303, USA
*
Get access

Abstract

Graphene specimens produced by chemical vapor deposition usually show p-type characteristics and significant hysteresis in ambient conditions. Among many methods, current annealing appears to be a better way of cleaning the sample due to the possibility of in-situ annealing in the measurement setup. However, long-time current annealing could increase defects in the underlying substrate. Studying the hysteresis with different anneal currents in a graphene device is, therefore, a topic of interest. In this experimental work, we investigate electron/hole transport in a graphene sample in the form of a Hall bar device with a back gate, where the graphene was prepared using chemical vapor deposition on copper foils. We study the hysteresis before and after current annealing the sample by cooling down to a temperature of 35 Kfrom room temperature with a back-gate bias in a closed cycle refrigerator.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Castro Neto, A. H., Guinea, F., Peres, N. M. R.. Novoselov, K. S., and Geiin, A. K.. Reviews of Modern Physics 81 (1), 109 (2009).CrossRefGoogle Scholar
Chen, J.-H.. Jang, C. Xiao, S.. Ishigaini, M., and Fuhrer, M. S.. Nature Nanotechnology 3. 206 (2008).CrossRefGoogle Scholar
Du, X.. Skachko, I., Barker, A., and Andrei, E. Y.. Nature Nanotechnology 3, 491 (2008).CrossRefGoogle Scholar
Du, X.. Skachko, I., Duerr, F.. Luican, A.. and Andrei, E. Y.. Nature 462, 192 (2009).CrossRefGoogle Scholar
Lin, Y. M., Dimitrakopoulos, C.. Jenkins, K. A.. Farmer, D. B.. Chiu, H. Y., Grill, A., and Avouris, P.. Science 327 (5966). 662 (2010).CrossRefGoogle Scholar
Wijewardena, U. K.. Brown, S. E., and Wang, X.-Q.. The Journal of Physical Chemistry C 120 (39), 22739 (2016).CrossRefGoogle Scholar
Nair, R. R., Blake, P.. Grigorenko, A. N.. Novoselov, K. S., Booth, T. J.. Stauber, T.. Peres, N. M., and Geim, A. K.. Science 320 (5881), 1308 (2008).CrossRefGoogle Scholar
Novoselov, K. S.. Geim, A. K., Morozov, S. V.. Jiang, D.. Zhang, Y.. Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A., Science 306 (5696). 666 (2004).CrossRefGoogle Scholar
Li, X., Cai, W.. Kim, J. An. S., Nah, J.. Yang, D.. Pmer, R.. Velamakanni, A.. Jung, I.. Tutuc, E.. Banerjee, S. K.. Colombo, L., and Ruoff, R. S., Science 324 (5932), 1312 (2009).CrossRefGoogle Scholar
Sarajlic, O. I. and Mam, R. G.. Chemistry of Materials 25 (9). 1643 (2013).CrossRefGoogle Scholar
Li, X., Magnuson, C. W.. Venugopal, A.. Trornp, R. M.. Hannon, J. B.. Vogel, E. M.. Colombo, L., and Ruoff, R. S., Journal of the American Chemical Society 133 (9). 2816 (2011).CrossRefGoogle Scholar
Shon, Nguyen H. and Ando, T.. Journal of the Physical Society of Japan 67 (7). 2421 (1998).CrossRefGoogle Scholar
Mani, R. G.. Applied Physics Letters 108 (3), 033507 (2016).CrossRefGoogle Scholar
Martin, J.. Akerman, N., Ulbricht, G., Lohmann, T.. Smet, J. H., von Klitzing, K., and Yacoby, A.. Nature Physics 4. 144 (2007).CrossRefGoogle Scholar
Katsnelson, M. I. and Geim, A. K.. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engmeering Sciences 366 (1863), 195 (2008).CrossRefGoogle Scholar
Wang, H.. Wu, Y., Cong, C.. Shang, J., and Yu, T., ACS Nano 4 (12), 7221 (2010).CrossRefGoogle Scholar
Kozbial, A.. Li, Z.. Sun, J.. Gong, X.. Zhou, F., Wang, Y.. Xu, H.. Liu, H.. and Li, L.. Carbon 74.218(2014).CrossRefGoogle Scholar
Wehling, T O., Lichtenstein, A. I., and Katsnelson, M. I.. Applied Physics Letters 93 (20), 202110(2008).CrossRefGoogle Scholar
Li, X.. Zhu, Y.. Cai, W.. Borvsiak, M.. Han, B.. Chen, D.. Piner, R. D.. Colombo, L., and Ruoff, R.S.. Nano Lett 9 (12). 4359 (2009).CrossRefGoogle Scholar
Yan, K., Peng, H.. Zhou, Y.. Li, H., and Liu, Z.. Nano Lett 11 (3), 1106 (2011).CrossRefGoogle Scholar
Bhaviripudi, S.. Jia, X., Dresselhaus, M. S.. and Kong, J.. Nano Lett 10 (10), 4128 (2010).CrossRefGoogle Scholar
Feng, T.. Xie, D., Li, G.. Xu, J.. Zhao, H., Ren, T.. and Zhu, H.. Carbon 78, 250 (2014).CrossRefGoogle Scholar
Furneaux, J. E. and Reinecke, T. L.. Physical Review B 33 (10), 6897 (1986).CrossRefGoogle Scholar
Lee, J. S.. Ryu, S.. Yoo, K.. Choi, I. S.. Yun, W. S., and Kim, J.. The Journal of Physical Chemistry C 111 (34), 12504 (2007).CrossRefGoogle Scholar
Kumar, P. and Kumar, A.. Applied Physics Letters 104 (8), 083517 (2014).Google Scholar