Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T23:53:34.315Z Has data issue: false hasContentIssue false

Effects of Defect on Ferroelectric Stability in PbTiO3Thin Films

Published online by Cambridge University Press:  19 February 2016

Lin Zhu*
Affiliation:
Department of Mechanical Engineering, Southern Methodist University, Dallas TX, USA
Jeong Ho You
Affiliation:
Department of Mechanical Engineering, Southern Methodist University, Dallas TX, USA
Jinghong Chen
Affiliation:
Department of Electrical & Computer Engineering, University of Houston, Houston, TX, USA
*
Get access

Abstract

Effects of defect on ferroelectric stability in PbTiO3 (PTO) thinfilms have been investigated using molecular dynamics with first-principleseffective Hamiltonian. In this paper, oxygen vacancy (Vo) has been considered tostudy the hysteresis loop, spontaneous polarization as a function of filmthickness. Vo has been modeled as a charged point defect. Density functionaltheory (DFT) calculations are performed to determine the Vo-induced localizedfields (both mechanical and electrical) and the calculated DFT results are usedas inputs to molecular dynamics simulations in a large system. The strain fieldinduced by the Vo is calculated by DFT calculations and fitted by the continuumstrain modeling, and the electrostatic field is given by the superposition ofthe Vo-induced field and the external field. Vo significantly reduces thespontaneous polarization and increases the critical thickness.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lichtensteiger, Céline, Triscone, Jean-Marc, Junquera, Javier, and Ghosez, Philippe, Phys. Rev. Lett. 94, 047603 (2005).CrossRefGoogle Scholar
Fong, D. D., Stephenson, G. B., Streiffer, S. K., Eastman, J. A., Auciello, O., Fuoss, P. H., Thompson, C., Science 304, 1650 (2004).CrossRefGoogle Scholar
Friessnegg, T., Aggarwal, S., Ramesh, R., Nielsen, E. H., and Keeble, D. J., Appl. Phys. Lett. 77, 127 (2000).CrossRefGoogle Scholar
Zhang, Zhen, Wu, Ping, Lu, Li and Shu, Chang, Journal of Alloys and Compounds 449, 362 (2008).CrossRefGoogle Scholar
Jin, H. Z. and Zhu, J., Journal of Applied Physics 92, 4594 (2002).CrossRefGoogle Scholar
Park, B. H., Noh, T. W., Lee, K. P., Kim, C. Y., and Jo, W., Appl. Phys. Lett. 70, 1101 (1997).CrossRefGoogle Scholar
Lee, J., Ramesh, R., Keramides, V. G., Warren, W. L., Pike, G. E., and Evans, J. T., Appl. Phys. Lett. 66, 1337 (1995).CrossRefGoogle Scholar
He, L., and Vanderbilt, , Phys. Rev. B 68, 134103 (2003).CrossRefGoogle Scholar
Park, C. H., and Chadi, D. J., Phys. Rev. B 57, 13961 (1998).CrossRefGoogle Scholar
Wang, Y., Niranjan, M. K., Janicka, K., Velev, J. P., Zhuravlev, M. Y., Jaswal, S. S., and Tsymbal, E. Y., Phys. Rev. B 82, 094114 (2010).CrossRefGoogle Scholar
Nishimatsu, T., Waghmare, U. V., Kawazoe, Y., and Vanderbilt, D., Phys. Rev. B 78, 104104 (2008).CrossRefGoogle Scholar
Zhong, W., Vanderbilt, D., and Rabe, K. M., Phys. Rev. B 52, 6301 (1995).CrossRefGoogle Scholar
Kumar, A., Rabe, K. M., and Waghmare, U. V., Phys. Rev. B 87, 024107 (2013).CrossRefGoogle Scholar
Phillips, Rob, Crystals, defects and microstructures Modeling Across Scales, (Cambridge Press, 2001), p. 328.CrossRefGoogle Scholar
Kresse, G. and Hafner, J., Phys. Rev. B 47, 558, (1993).CrossRefGoogle Scholar