Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-19T15:38:21.846Z Has data issue: false hasContentIssue false

The effect of phosphate melt cooling rate on phase composition and leach resistance of final waste form

Published online by Cambridge University Press:  22 December 2017

Konstantin V. Martynov
Affiliation:
Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Leninskii av. 31/4 Moscow 119071 Russia
Elena V. Zakharova
Affiliation:
Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Leninskii av. 31/4 Moscow 119071 Russia
Sergey V. Stefanovsky*
Affiliation:
Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Leninskii av. 31/4 Moscow 119071 Russia
Boris F. Myasoedov
Affiliation:
Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Leninskii av. 31/4 Moscow 119071 Russia
*
Get access

Abstract

Slow cooling of phosphate melt at liquid nuclear waste solidification yields glass-crystalline material. Partial crystallization during melt solidification results in elemental partitioning among crystalline phase and glass: Al, Cr, Fe are concentrated in the crystalline phosphate phase while Ca, Ni, La, U enter predominantly in the residual glass. Glass dissolution rate and leach rate of La and U as rare earth and actinide surrogates depends strongly on the glass composition, for example reduction of Al2O3 content in the glass to ∼10-12 wt.% increases leachability by three orders of magnitude as compared to the glass with specified composition (∼18-22 wt.% Al2O3).

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ojovan, M.I. and Lee, W.E., An Introduction to Nuclear Waste Immobilisation, (Elsevier Ltd, Amsterdam, 2005).Google Scholar
Plaisted, T. J., Mo, F., Wilson, B. K., Young, C., and Hrma, P.. Ceram. Trans. 119, 317 (2001).Google Scholar
Izak, P., Hrma, P., Arey, B. W., and Plaisted, T. J... J. Non-Cryst. Solids 289, 17 (2001).Google Scholar
Kobelev, A.P., Stefanovsky, S.V., Lashchenova, T.N., Zakharenko, V.N., Polkanov, M.A., Knyazev, O.A., Herman, C.C., Bickford, D.F., Holtzscheiter, E.W., ICEM’05: The 10th International Conference on Environmental Remediation and Radioactive Waste Management, September 4-8, 2005 (Scottish Exhibition & Conference Centre, Glasgow, Scotland, 2005) ICEM05-1222.Google Scholar
Kobelev, A.P., Stefanovsky, S.V., Zakharenko, V.N., Polkanov, M.A., Knyazev, O.A., Lashchenova, T.N., Vlasov, V.I., Herman, C.C., Bickford, D.F., Holtzscheiter, E.W., Goles, R.W., Gombert, D., Waste Management ’05 Conference, February 27 – March 3, 2005 (Tucson, AZ, 2005).Google Scholar
Lutze, W., Radioactive Waste Forms for the Future, edited by Lutze, W and Ewing, R.C., (Elsevier, Amsterdam, 1988), p. 159.Google Scholar
Hayward, P.J., Radioactive Waste Forms for the Future, Lutze, W and Ewing, R.C. (eds.), Elsevier, 1988) pp. 429493.Google Scholar
Caurant, D., Loiseau, P., Majérus, O., Aubin-Chevaldonnet, V., Bardez, I. and Quintas, A., Glasses, Glass-Ceramics and Ceramics for Immobilization of Highly Radioactive Nuclear Wastes (Nova Science Publishers, Inc., 2009).Google Scholar
Malinina, G.A., Stefanovsky, O.I., Stefanovsky, S.V., J. Nucl. Mater. 416, 230 (2011).Google Scholar
Vance, E.R., Stewart, M.W.A., Moricca, S., Mater. Res. Soc. Symp. Proc. 1475, 163 (2012).Google Scholar
Phosphate Glasses with Radioactive Wastes, edited by Vashman, A.A. and Polyakov, A.S., (Tsniiatominform, 1997, in Russian).Google Scholar
Honma, T., Sato, A., Ito, N., Nogashi, T., Shinozali, K., Komatsu, T., J. Nob-Cryst. Solids. 404, 26 (2014).Google Scholar
Moguš-Milanković, A., Šantić, A., Pavić, L., Sklepić, K., Croat. Chem. Acta. 88, 553 (2015).CrossRefGoogle Scholar
Stefanovsky, S.V., Stefanovskaya, O.I., Kadyko, M.I., Nikonov, B.S., and Myasoedov, B.F., Radiochemistry. 58, 654 (2016).CrossRefGoogle Scholar
Polyakov, A.S., Borisov, G.B., Moiseenko, N.I., Osnovin, V.I., Atomic Energy 76, 181 (1994).Google Scholar
Martynov, K.V., Budantseva, N.A., Tananaev, I.G., Kovalskiy, A.M., Kotelnikov, A.R., Bulletin of the Department of Earth Sciences of the RAS, NZ60723 (2011). doi:10.2205/2011NZ000202 (in Russian).CrossRefGoogle Scholar
Hespe, E.D., Atomic Energy Review. 9, 195 (1971)Google Scholar
Martynov, K.V., Konstantinova, L.I., Konevnik, Yu.V., Zakharova, E.V., Issues Radiat. Safety [2] 43 (2014) (in Russian).Google Scholar
de la Rochère, M, Kahn, A., d’Yvoire, F., Bretey, E., Mat. Res. Bull. 20, 27 (1985).Google Scholar