Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T01:08:07.111Z Has data issue: false hasContentIssue false

Effect of dopant on the morphology and electrochemical performance of Ni1-xCaxCo2O4 (0 ≤ x ≤ 0.8) oxide hierarchical structures

Published online by Cambridge University Press:  23 March 2020

D. Guragain
Affiliation:
Department of Physics and Materials Science, The University of Memphis, Memphis, TN 38152
C. Zequine
Affiliation:
Department of Chemistry, Pittsburg State University, Pittsburg, KS 66762
R. Bhattarai
Affiliation:
Department of Physics and Materials Science, The University of Memphis, Memphis, TN 38152
J. Choi
Affiliation:
Department of Chemistry, Pittsburg State University, Pittsburg, KS 66762
R. K. Gupta
Affiliation:
Department of Chemistry, Pittsburg State University, Pittsburg, KS 66762
X. Shen
Affiliation:
Department of Physics and Materials Science, The University of Memphis, Memphis, TN 38152
S. R. Mishra*
Affiliation:
Department of Physics and Materials Science, The University of Memphis, Memphis, TN 38152
*
Get access

Abstract

The binary metal oxides are increasingly used as supercapacitor electrode materials in energy storing devices. Particularly NiCo2O4 has shown promising electrocapacitive performance with high specific capacitance and energy density. The electrocapacitive performance of these oxides largely depends on their morphology and electrical properties governed by their energy band-gaps and defects. The morphological structure of NiCo2O4 can be altered via the synthesis route, while the energy band-gap could be altered by doping. Also, doping can enhance crystal stability and bring in grain refinement, which can further improve the much-needed surface area for high specific capacitance. Given the above, this study evaluates the electrochemical performance of Ca-doped Ni1-xCaxCo2O4 (0 ≤ x ≤ 0.8) compounds. This stipulates promising applications for electrodes in future supercapacitors.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Yang, Q. , Lu, Z. , Li, T. , Sun, X. and Liu, J. , Nano Energy, 7, 170-178 (2014).CrossRefGoogle Scholar
Wang, K. , Wu, H. , Meng, Y. and Wei, Z. , Small, 10 (1), 14-31 (2014).CrossRefGoogle ScholarPubMed
Krishnan, S.G. , Reddy, M.V. , Harilal, M. , Vidyadharan, B. , Misnon, I.I. , Ab Rahim, M.H. , Ismail, J. and Jose, R. , Electrochim. Acta. 161, 312-321 (2015).CrossRefGoogle Scholar
Zhao, Y. , Chen, M. and Wu, L. , Nanotechnology, 27, 342001 (2016).CrossRefGoogle Scholar
Liu, T. , Pell, W.G. and Conway, B.E. , Electrochim. Acta. 42, 3541-3552 (1997).CrossRefGoogle Scholar
Cao, F. , Pan, G.X. , Xia, X.H. , Tang, P.S. and Chen, H.F. , J. Power Sources, 264, 161-167 (2014).CrossRefGoogle Scholar
Misnon, I.I. , Aziz, R.A. , Zain, N.K.M. , Vidhyadharan, B. , Krishnan, S.G. and Jose, R. , Mater. Res. Bull. 57, 221-230 (2014).CrossRefGoogle Scholar
Jadhav, H.S. , Kalubarme, R.S. , Park, C.N. , Kim, J. and Park, C.J. , Nanoscale. 6 (17), 10071-10076 (2014).CrossRefGoogle Scholar
Gu, S. , Lou, Z. , Ma, X. and Shen, G. , ChemElectroChem. 2 (7), 1042-1047 (2015).CrossRefGoogle Scholar
Mohamed, S.G. , Chen, C.J. , Chen, C.K. , Hu, S.F. and Liu, R.S. , ACS appl. Mater. Inter. 6 (24), 22701-22708 (2014).CrossRefGoogle Scholar
Shen, L. , Yu, L. , Yu, X.Y. , Zhang, X. and Lou, X.W. , Angew. Chem. Int. Edit. 54 (6), 1868-1872 [2015].CrossRefGoogle Scholar
Liu, C. , Li, F. , Ma, L.P. and Cheng, H.M. , Adv. Mater. 22 (28), E28-E62 (2010).CrossRefGoogle Scholar
Li, L. , Zhang, Y.Q. , Liu, X.Y. , Shi, S.J. , Zhao, X.Y. , Zhang, H. , Ge, X. , Cai, G.F. , Gu, C.D. , Wang, X.L. and Tu, J.P. , Electrochim. Acta. 116, 467-474 (2014).CrossRefGoogle Scholar
Torres, A. , Bardé, F. and Arroyo-de Dompablo, M.E. , Solid State Ionics, 340, 115004 (2019).CrossRefGoogle Scholar
Fouad, O.A. , Hassan, A.M. , El-Wahab, H.A. , Eldin, A.M. , Naser, A.R.M. and Wahba, O.A. , J. Alloy. Compd. 537, 165-170 (2012).CrossRefGoogle Scholar
Guragain, D. , Zequine, C. , Poudel, T. , Neupane, D. , Gupta, R.K. and Mishra, S.R. , J. Nanosci. Nanotechno. 20 (5), pp.3182-3194 (2020).CrossRefGoogle Scholar
Kresse, G. and Furthmüller, J. , Phys. Rev. B. 54 (16), 11169 (1996).CrossRefGoogle Scholar
Kresse, G. and Joubert, D. , Phys. Rev. B. 59 (3), 1758 (1999).CrossRefGoogle Scholar
Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides" By Shannon, R. D. . Central Research and Development Department, Experimental Station, E. I. Du Pont de Nemours and Company, Wilmington, Delaware 19898, U.S.A.Published in Acta Crystallographica. (1976). A32, Pages 751-767.Google Scholar
Miki, Y. , Nakazato, D. , Ikuta, H. , Uchida, T. and Wakihara, M. , J. Power. Sources. 54 (2), 508-510 (1995).CrossRefGoogle Scholar
Dubal, D.P. , Gomez-Romero, P. , Sankapal, B.R. and Holze, R. , Nano Energy, 11, 377-399 (2015).CrossRefGoogle Scholar
Hu, M.Z.C. , Harris, M.T. and Byers, C.H. , Journal of Colloid and Interface Science, 198 (1), 87-99 (1998).CrossRefGoogle Scholar
Hsiao, K.C. , Liao, S.C. and Chen, J.M. , Electrochim. Acta. 53 (24), 7242-7247 (2008).CrossRefGoogle Scholar
Wang, X. , Han, X. , Lim, M. , Singh, N. , Gan, C.L. , Jan, M. and Lee, P.S. , J. Phys. Chem. C, 116 (23), 12448-12454 (2012).CrossRefGoogle Scholar
Pendashteh, A. , Rahmanifar, M.S. , Kaner, R.B. and Mousavi, M.F. , Chem. Commun. 50 (16), 1972-1975 (2014).CrossRefGoogle Scholar
Meher, S.K. , Justin, P. and Rao, G.R. , Nanoscale. 3 (2), 683-692 (2011).CrossRefGoogle ScholarPubMed
Lima-Tenório, M.K. , Ferreira, C.S. , Rebelo, Q.H.F. , Souza, R.F.B.D. , Passos, R.R. , Pineda, E.A.G. and Pocrifka, L.A. , Mater. Res. 21 (2) (2018).CrossRefGoogle Scholar
Xu, M.W. , Zhao, D.D. , Bao, S.J. and Li, H.L. , J. Solid. State. Electr. 11 (8), 1101-1107 (2007).CrossRefGoogle Scholar
Conway, B. E. , Electrochemical Supercapacitors, Scientific Fundamental and Technological Applications, (Kluwer Academic/Plenum: New York, 1999).Google Scholar
Aghazadeh, M. , J. Appl. Electrochem. 42 (2), 89-94 (2012).CrossRefGoogle Scholar
Tummala, R. , Guduru, R.K. and Mohanty, P.S. , J. Power Sources. 209, 44-51 (2012).CrossRefGoogle Scholar
Augustyn, V. , Come, J. , Lowe, M.A. , Kim, J.W. , Taberna, P.L. , Tolbert, S.H. , Abruña, H.D. , Simon, P. and Dunn, B. , Nat. Mater. 12 (16), 518 (2013).CrossRefGoogle Scholar
Guragain, D. , Zequine, C. , Poudel, T. , Neupane, D. , Gupta, R.K. and Mishra, S.R. ,J. Nanosci. Nanotechno. 20 (4), 2526-2537 (2020).CrossRefGoogle Scholar
Wang, Z. , Su, H. , Liu, F. , Chu, X. , Yan, C. , Gu, B. , Huang, H. , Yang, T. ,Chen, N. , Han, Y. and Deng, W. , Electrochim. Acta. 307, 302-309 (2019).CrossRefGoogle Scholar
Wang, J. , Polleux, J. , Lim, J. and Dunn, B. , J. of Phys. Chem. C. 111 (40), 14925-14931 (2007).CrossRefGoogle Scholar
Trasatti, S. and Kurzweil, P. , Platin. Met. Rev. 38 (2), 46-56 (1994).Google Scholar
Candler, J. , Elmore, T. , Gupta, B.K. , Dong, L. , Palchoudhury, S. and Gupta, R.K. , New J. Chem. 39, 6108-6116 (2015).CrossRefGoogle Scholar
Perdew, J.P. , Burke, K. and Ernzerhof, M. , Phys. Rev. Lett. 77 (18), 3865 (1996).CrossRefGoogle Scholar
Heyd, J. , Scuseria, G.E. and Ernzerhof, M. , J. chem. Phys. 118, 8207-8215 (2003).CrossRefGoogle Scholar
Shi, X. , Bernasek, S.L. and Selloni, A. , J. Phys. Chem. C. 120, 14892-14898 (2016).CrossRefGoogle Scholar
Bitla, Y. , Chin, Y.Y. , Lin, J.C. , Van, C.N. , Liu, R. , Zhu, Y. , Liu, H.J. , Zhan, Q. , Lin, H.J. , Chen, C.T. and Chu, Y.H. , Sci. Rep. Uk. 5, 15201 (2015).CrossRefGoogle Scholar
Yuan, C. , Li, J. , Hou, L. , Lin, J. , Zhang, X. and Xiong, S. , J. Mater. Chem. A, 1 (37), 11145-11151 (2013).CrossRefGoogle Scholar