Published online by Cambridge University Press: 16 January 2017
In a scenario where ground water enters a canister for spent nuclear fuel in a deep geological repository, the presence of dissolved ions in the water could possibly influence the fuel dissolution due to effects on radiolysis yields. One species of particular interest in this context is bromide, which has a proven ability to scavenge hydroxyl radicals much faster than molecular hydrogen does. As a result, bromide could inhibit the beneficial effect of dissolved hydrogen, which has been shown in γ-radiolysis experiments. However, already a few hundred years after repository closure, α-decay starts to dominate in the radiation field from the spent fuel. Hence, the effects of α-radiolysis are expected to govern the fuel dissolution over the geological timeframes of the repository. In the present work, α-radiolysis experiments have been performed to determine the effect of bromide ions on the yield of hydrogen peroxide by mass spectrometric measurement of its decomposition product oxygen. The use of high activity 238Pu solutions has made it possible to study this effect during pure α-radiolysis from a homogeneously distributed radiation field. To simulate deep bedrock repository conditions, and to minimize the influence of in-leaking O2 from air, the studies were performed using graphite sealed stainless steel autoclaves with an initial atmosphere of 10 bar H2. The results show that addition of 1 mM Br- to the solution gives no significant effect on the O2 yield for radiation doses up to 2 MGy. This lack of effect is most likely explained by the limited radical escape yields from radiation tracks in pure α-radiolysis.