No CrossRef data available.
Published online by Cambridge University Press: 10 January 2018
Single crystal Au microspheres, of 3 μm diameter, with sputter-deposited Ni surface layers, of 40 or 80 nm thickness, were tested in compression at three loading rates to investigate the role of thin passive layers on the mechanisms of plastic deformation of small-volume FCC ductile metal samples. The Ni layer resulted in an increase in the incipient yield force by about 10%. Micro-cracking of the Ni layer was observed to occur with incipient yielding. The estimated apparent activation volume of the incipient plastic deformation process was found to be nearly identical for the Ni-coated and the uncoated Au microspheres. This suggests that, while the stress required to initiate incipient plastic deformation was increased by the constraint imposed by the Ni layer, the subsequent plastic flow occurred by a dislocation nucleation and glide mechanism that is essentially the same as that occurring in an unconstrained Au microsphere.