Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T20:45:16.069Z Has data issue: false hasContentIssue false

Development of All-Diamond Scanning Probes Based on Faraday Cage Angled Etching Techniques

Published online by Cambridge University Press:  02 March 2020

C. Giese*
Affiliation:
Fraunhofer IAF, Fraunhofer Institute for Applied Solid State Physics, Freiburg/Germany
P. Quellmalz
Affiliation:
Fraunhofer IAF, Fraunhofer Institute for Applied Solid State Physics, Freiburg/Germany
P. Knittel
Affiliation:
Fraunhofer IAF, Fraunhofer Institute for Applied Solid State Physics, Freiburg/Germany
*
Get access

Abstract

We are proposing a novel fabrication method for single crystal diamond scanning probes for atomic force microscopy (AFM), exploiting Faraday cage angled etching (FCAE). Common, oxygen-based, inductively coupled plasma (ICP) dry etching processes for diamond are limited with respect to the achievable geometries. The fabrication of freestanding micro- and nanostructures is therefore challenging. This is a major disadvantage for several application fields e.g., for realizing scanning magnetometry probes based on nitrogen vacancy (NV) centres and capable of measuring magnetic fields at the nanoscale. Combining a planar design with FCAE and state-of-the-art electron beam lithography (EBL) yields a reduction of process complexity and cost compared to the established fabrication technology of micro-opto-mechanical diamond devices. Here, we report on the direct comparison of both approaches and present first proof-of-concept planar-FCAE-prototypes for scanning probe applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Balmer, R. S., Brandon, J. R., Clewes, S. L., Dhillon, H. K., Dodson, J. M., Friel, I., Inglis, P. N., Madgwick, T. D., Markham, M. L., Mollart, T. P., Perkins, N., Scarsbrook, G. A., Twitchen, D. J., Whitehead, A. J., Wilman, J. J., Woollard, S. M., Journal of physics. Condensed matter an Institute of Physics journal 2009, 21, 364221.CrossRefGoogle Scholar
Koizumi, S., Nebel, C., Nesladek, M., Physics and Applications of CVD Diamond, Wiley 2008.CrossRefGoogle Scholar
Nebel, C. E., in Nanodiamonds Micro and Nano Technologies (Ed.: Arnault, J.-C.), Elsevier 2017, p. 1.Google Scholar
Aharonovich, I., Greentree, A. D., Prawer, S., Nature Photon 2011, 5, 397.CrossRefGoogle Scholar
Balasubramanian, G., Chan, I. Y., Kolesov, R., Al-Hmoud, M., Tisler, J., Shin, C., Kim, C., Wojcik, A., Hemmer, P. R., Krueger, A., Hanke, T., Leitenstorfer, A., Bratschitsch, R., Jelezko, F., Wrachtrup, J., Nature 2008, 455, 648.CrossRefGoogle Scholar
Balasubramanian, G., Neumann, P., Twitchen, D., Markham, M., Kolesov, R., Mizuochi, N., Isoya, J., Achard, J., Beck, J., Tissler, J., Jacques, V., Hemmer, P. R., Jelezko, F., Wrachtrup, J., Nature materials 2009, 8, 383.CrossRefGoogle Scholar
Gruber, A., Science 1997, 276, 2012.CrossRefGoogle Scholar
Hanson, R., Awschalom, D. D., Nature 2008, 453, 1043.CrossRefGoogle Scholar
Aharonovich, I., Babinec, T., in Comprehensive hard materials: Volume 1-3: Hardmetals, ceramics, super hard materials (Eds.: Nebel, C. E., Mari, D., LLanes, L., Sarin, V. K.), Elsevier. Amsterdam, Waltham, Heidelberg 2014, p. 469.Google Scholar
Berman, G. P., Bishop, A. R., Chernobrod, B. M., Hawley, M. E., Brown, G. W., Tsifrinovich, V. I., J. Phys.: Conf. Ser. 2006, 38, 167.Google Scholar
Degen, C. L., Appl. Phys. Lett. 2008, 92, 243111.CrossRefGoogle Scholar
Maze, J. R., Stanwix, P. L., Hodges, J. S., Hong, S., Taylor, J. M., Cappellaro, P., Jiang, L., Dutt, M. V. G., Togan, E., Zibrov, A. S., Yacoby, A., Walsworth, R. L., Lukin, M. D., Nature 2008, 455, 644.CrossRefGoogle Scholar
Appel, P., Neu, E., Ganzhorn, M., Barfuss, A., Batzer, M., Gratz, M., Tschöpe, A., Maletinsky, P., The Review of scientific instruments 2016, 87, 63703.CrossRefGoogle Scholar
Maletinsky, P., Hong, S., Grinolds, M. S., Hausmann, B., Lukin, M. D., Walsworth, R. L., Loncar, M., Yacoby, A., Nature nanotechnology 2012, 7, 320.CrossRefGoogle Scholar
Zhou, T. X., Stöhr, R. and Yacoby, A., Appl. Phys. Lett. 2017 , 111, 163106CrossRefGoogle Scholar
Burek, M. J., de Leon, N. P., Shields, B. J., Hausmann, B. J. M., Chu, Y., Quan, Q., Zibrov, A. S., Park, H., Lukin, M. D., Lončar, M., Nano letters 2012, 12, 6084.CrossRefGoogle Scholar
Burek, M. J., Chu, Y., Liddy, M. S. Z., Patel, P., Rochman, J., Meesala, S., Hong, W., Quan, Q., Lukin, M. D., Lončar, M., Nature communications 2014, 5, 5718.CrossRefGoogle Scholar
Latawiec, P., Burek, M. J., Sohn, Y.-I., Lončar, M., Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 2016, 34, 41801.CrossRefGoogle Scholar
Widmann, C. J.; Giese, C.; Wolfer, M.; Brink, D.; Heidrich, N.; Nebel, C. E., Diamond and Related Materials 2016 54, S. 2–8.Google Scholar
Wasa, K., in Handbook of Sputtering Technology, Elsevier 2012, p. 41.CrossRefGoogle Scholar
Tao, Y., Degen, C., Advanced materials (Deerfield Beach, Fla.) 2013, 25, 3962.CrossRefGoogle Scholar
Challier, M., Sonusen, S., Barfuss, A., Rohner, D., Riedel, D., Koelbl, J., Ganzhorn, M., Appel, P., Maletinsky, P., Neu, E., Micromachines 2018, 9, 148.CrossRefGoogle Scholar
Savenko, A., Yildiz, I., Petersen, D. H., Bøggild, P., Bartenwerfer, M., Krohs, F., Oliva, M., Harzendorf, T., Nanotechnology 2013, 24, 465701.CrossRefGoogle Scholar
Yacoot, A., Koenders, L., New J. Phys. 2008, 41, 103001.Google Scholar
Knittel, P., Hibst, N., Mizaikoff, B., Strehle, S., Kranz, C., Ultramicroscopy 2017, 179, 24-32.CrossRefGoogle Scholar
Tao, Y., Boss, J. M., Moores, B. A., Degen, C. L., Nat Commun, 5, 1.Google Scholar
Ovartchaiyapong, P., Pascal, L. M. A., Myers, B. A., Lauria, P., Bleszynski Jayich, A. C., Appl. Phys. Lett. 2012, 101, 163505.CrossRefGoogle Scholar
Rath, P., Khasminskaya, S., Nebel, C., Wild, C., Pernice, W. H. P., Nature communications 2013, 4, 1690.CrossRefGoogle Scholar