Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-07T20:58:00.959Z Has data issue: false hasContentIssue false

Determining the Optimal Phase-Change Material via High-Throughput Calculations

Published online by Cambridge University Press:  14 May 2019

Nicholas A. Pike*
Affiliation:
Center for Materials Science and Nanotechnology, University of Oslo, NO-0349 Oslo, Norway
Amina Matt
Affiliation:
Institute of Materials, Swiss Federal Institute of Technology, Lausanne, Switzerland
Ole M. Løvvik
Affiliation:
Center for Materials Science and Nanotechnology, University of Oslo, NO-0349 Oslo, Norway SINTEF Materials Science, Forskningsveien 1, NO-0314 Oslo, Norway
Get access

Abstract

The discovery and optimization of phase-change and shape memory alloys remain a tedious and expensive process. Here a simple computational method is proposed to determine the ideal phase- change material for a given alloy composed of three elements. Using first-principles calculations, within a high-throughput framework, the ideal composition of a phase-change material between any two assumed phases can be determined. This ideal composition minimizes the interface strain during the structural transformation. Then one can target this ideal composition experimentally to produce alloys with low mechanical failure rates for a potentially wide variety of applications. Here we will provide evidence of the effectiveness of our calculations for a well-known phase- change material in which we predict the ideal composition and compare it to experimental results.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kenisarin, M. M., “High-temperature phase change materials for thermal energy storage,”Renew. Sust. Energy Rev., vol. 14, pp. 955970, 2010.CrossRefGoogle Scholar
Rathod, M. K. and Banerjee, J., “Thermal stability of phase change materials used in latent heat energy storage systems: A review.,” Renew. Sust. Energy Rev. , vol. 18, pp. 246258, 2013.CrossRefGoogle Scholar
Walia, H., Brantley, W. A. and Gerstein, H., “An initial investigation of the bending and torsional properties of Nitinol root canal files,” J. Endod. , vol. 14, pp. 346351, 1988.CrossRefGoogle ScholarPubMed
Srivastava, V., Song, Y., Bhatti, K. and James, R. D., “The direct conversion of heat to electricity using multiferroic alloys,” Adv. Energy Mater. , vol. 1, pp. 97102, 2011.CrossRefGoogle Scholar
Hunter, S. R., Lavrik, N. V., Datskos, P. G. and Clayton, D., “Pyroelectric energy scavenging techniques for self-powered nuclear reactor wireless sensor networks,” Nuc. Tech. , pp. 172184, 2017.Google Scholar
Song, W.-D., Shi, L.-P., Miao, X.-S. and Chong, C.-T., “Synthesis and Characteristics of phase- change magnetic materials,” Adv. Mater. , vol. 20, pp. 23942397, 2008.CrossRefGoogle Scholar
Chen, C., Jost, P., Volker, H., Kaminski, M., Witrssohn, M., Engelmann, U., Kruger, K., Schlich, F., Schlockermann, C., Lobo, R. P. S. M. and Wuttig, M., “Dielectric properties of amorphous phase-change materials,” Phys. Rev. B , vol. 95, p. 094111, 2017.CrossRefGoogle Scholar
Kang, S. D., Danilkin, S. A., Aydemir, U., Avdeev, M., Struder, A. and Snyder, G. J., “Apparent critical phenomena in the superionic phase transition of Cu2-xSe,” vol. 18, p. 013024, 2016.Google Scholar
Bechtold, C., Chluba, C., de Miranda, R. L. and Quandt, E., “High cyclic stability of the elastocaloric effect in sputtered TiNiCu shape memory films,” Appl. Phys. Lett. , vol. 101, p. 091903, 2012.CrossRefGoogle Scholar
Moya, X., Stern-Taulats, E., Crossley, S., Gonzalez-Alonso, D., Kar-Narayan, S., Planes, A., Manosa, L. and Mathur, N. D., “Giant Electrocaloric strength in single-crystal BaTiO3,” Adv. Mater. , vol. 25, pp. 13601365, 2013.CrossRefGoogle ScholarPubMed
Song, Y., Chen, X., Dabade, V., Shield, T. W. and James, R. D., “Enhanced reversibility and unusual microstructure of a phase-transforming material,” Nature , vol. 502, pp. 8588, 2013.CrossRefGoogle ScholarPubMed
Chluba, C., Ge, W., de Miranda, R. L., Strobel, J., Kienle, L., Quandt, E. and Wuttig, M., “Ultralow-fatigue shape memory alloy films,” Science , vol. 348, pp. 10041007, 2015.CrossRefGoogle ScholarPubMed
James, R. D. and Zhang, Z., Magnetism and Structure in Functional Materials, Planes, A., Manosa, L. and Saxena, A., Eds., Berlin, Heidelberg: Springer, 2005.Google Scholar
James, R. D., “Materials From Mathematics,” Bulletin of the American Mathematical Society , vol. 56, no. 1, pp. 128, 2019.CrossRefGoogle Scholar
Chen, X., Srivastava, V., Dabade, V. and , R. D. and James, , “Study of the cofactor conditions: conditions of supercompatibility between phases,” J. Mech. Phys. Solids , vol. 61, pp. 25662587, 2013.CrossRefGoogle Scholar
Kresse, G. and Furthmuller, J., “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mat. Sci. , vol. 6, p. 15, 1996.CrossRefGoogle Scholar
Kresse, G. and Furthmuller, J., “Efficient iterative schemes for ab inito total-energy calculations using a plane-wave basis set,” Phys. Rev. B , vol. 54, p. 11169, 1996.CrossRefGoogle Scholar
Kim, K., Ward, L., He, J., Krishna, A., Agrawal, A. and Wolverton, C., “Machine-learning- accelerated high-throughput materials screening: Discovery of novel quaternary Heusler compounds,” Phys. Rev. Mat. , vol. 2, p. 123801, 2018.Google Scholar
Hellman, O., Abriksov, I. A. and Simak, S. I., “Lattice dynamics of anharmonic solids from first- principles.,” Phys. Rev. B , vol. 84, p. 180301, 2011.CrossRefGoogle Scholar
Hellman, O. and Abriksov, I. A., “Temperature-Dependent effective third-order interatomic force constants from first-principles,” Phys. Rev. B , vol. 88, p. 144301, 2013.CrossRefGoogle Scholar
Hellman, O., Steneteg, P., Abriksov, I. A. and Simak, S. I., “Temperature dependent effective potential method for accurate free energy calculations of solids,” Phys. Rev. B , vol. 87, p. 10411, 2013.CrossRefGoogle Scholar
Blochl, P. E., “Projector augmented-wave method,” Phys. Rev. B , vol. 50, p. 17953, 1994.CrossRefGoogle ScholarPubMed
Kresse, G. and Joubert, D., “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B , vol. 59, p. 1758, 1999.CrossRefGoogle Scholar
Perdew, J. P., Burke, K. and Ernzerhof, M., “General Gradient approximation made simple,” Phys. Rev. Lett. , vol. 77, p. 2865, 1996.CrossRefGoogle Scholar
Monkhorst, H. J. and Pack, J. D., “Special points for Brillouin zone integrations,” Phys. Rev. B , vol. 13, pp. 51885192, 1976.CrossRefGoogle Scholar
Vegard, L., “Die Konstitution der Mischkristalle und die Raumfϋllung der Atome (The Constitution of the mixed crystal and the space filling of the atoms),” Zeitschrift fur Physik (German) , vol. 5, pp. 1726, 1921.CrossRefGoogle Scholar
Okamoto, H. and Massalski, T. B., “The Ag-Au (silver-gold) system,” Bulletin of Alloy Phase Diagrams , vol. 4, no. 1, pp. 3036, 1983.CrossRefGoogle Scholar
Predel, B., Ag-Cu( Silver-Copper), Berlin, Heidelberg: Springer, 1991, pp. 15.Google Scholar
Adachi, S., “GaAs, AlAs, and AlxGaxAs: Material parameters for use in research and device applications,” J. Appl. Phys. , vol. 58, no. 3, pp. R1R29, 1985.CrossRefGoogle Scholar
Ball, J. M. and James, R. D., Fine Phase Mixtures as Minimizers of Energy., Berlin Heidelberg: Springer, 1989.CrossRefGoogle Scholar
Chen, X., Song, Y., Tamura, N. and James, R. D., “Determination of the stretch tensor for structural transformations,” J. Mech. and Phys. of Solids , vol. 93, pp. 3443, 2016.CrossRefGoogle Scholar
Nakanishi, N., Murakami, Y. and Kachi, S., “Martensitic transformations in Au-Cu-Zn,” J. J. of Appl. Phys. , vol. 4, pp. 544545, 1965.CrossRefGoogle Scholar
Kubo, H. and Shimizu, K., “Crystal Structure of Cu30Au25Zn45 Martensite,” Trans. Jpn. Inst. Met. , vol. 17, pp. 330338, 1976.CrossRefGoogle Scholar
Dasgupta, R., “A look into Cu-based shape memory alloys: Present scenario and future prospects.,” J. of Mat. Res. , vol. 29, no. 16, pp. 16811698, 2014.CrossRefGoogle Scholar
Tadaki, T., Okazaki, H., Yoshiyuki, N. and Schimizu, K., “Atomic configuration determined by ALCHEMI and X-ray diffraction of a stabilized M18R martensite in a beta phase Cu-Au-Zn alloy.,” Mater. Trans. JIM , vol. 31, pp. 941947, 1990.CrossRefGoogle Scholar
Tadaki, T., Okazaki, H., Yoshiyuki, N. and Shimizu, K., “Atomic configuration determined by ALCHEMI and X-ray diffraction of the L21 type parent phase in a Cu-Au-Zn shape memory alloy.,” Mater. Trans. JIM , vol. 31, pp. 935940, 1990.CrossRefGoogle Scholar
Otsuka, K., Ohba, T., Tokonami, M. and Wayman, C. M., “New description of long period stacking order structures of martensites in β-phase alloys,” Scripta Met. et Mat. , vol. 29, no. 10, pp. 13591364, 1993.CrossRefGoogle Scholar