Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T19:05:49.573Z Has data issue: false hasContentIssue false

Defect-Mediated Mechanics in Non-Stoichiometric Oxide Films

Published online by Cambridge University Press:  10 January 2018

Jessica G. Swallow
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139U.S.A.
Mostafa Youssef
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139U.S.A. Department of Mechanical Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835Egypt
Krystyn J. Van Vliet*
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139U.S.A.
*
Get access

Abstract

Chemomechanical coupling is a hallmark of the functional oxides that are used widely for energy conversion and storage applications including solid oxide fuel cells (SOFCs). These oxides rely on the presence of oxygen vacancies to enable important properties including ionic conductivity and gas exchange reactivity. However, such defects can also facilitate chemical expansion, or coupling between material volume and defect content. Such chemomechanical coupling is particularly relevant with the recent interest in thin film SOFCs which have the potential to decrease operating temperatures and enable portable applications. Thin films present a particular challenge for modelling, as experimental results indicate that film defect chemistry can differ significantly from bulk counterparts under the same experimental conditions. In this study, we explore the influence of point defects, including oxygen vacancies and cation dopants, on the elastic properties of a model material, PrxCe1-xO2-δ (PCO), using density functional theory (DFT + U) simulations. Previously, we showed that PCO films exhibit a decrease in Young’s elastic modulus E due to chemical expansion, but that this decrease can be larger than predicted based on bulk defect models. Here, we apply DFT + U to show that the biaxial elastic modulus of PCO decreases with increased oxygen vacancy content in both bulk and membrane forms. We consider the relative influences of oxygen vacancies and cation dopants on this trend, and highlight local structural changes in the presence of such defects. By relating our computational and experimental results, we evaluate the relative importance of increased oxygen vacancy content and finite thickness on the mechanical properties of oxides that are subject to chemical expansion under operando conditions. This work informs the design of μ-SOFCs, emphasizing the need to characterize thin films separately from bulk counterparts and demonstrating how functional defect content can influence development of stress and strain in devices by changing both material volume and elastic properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Tuller, H.L. and Bishop, S.R., Annu. Rev. Mater. Res. 41, 369 (2011).Google Scholar
Bishop, S.R., Marrocchelli, D., Chatzichristodoulou, C., Perry, N.H., Mogensen, M.B., Tuller, H.L., and Wachsman, E.D., Annu. Rev. Mater. Res. 44, 205 (2014).CrossRefGoogle Scholar
Park, K., Yu, S., Bae, J., Kim, H., and Ko, Y., Int. J. Hydrogen Energy 35, 8670 (2010).Google Scholar
Waldbillig, D., Wood, A., and Ivey, D.G., J. of Power Sources 145, 206 (2005).Google Scholar
Amezawa, K., Kushi, T., Sato, K., Unemoto, A., Hashimoto, S.-I., and Kawada, T., Solid State Ionics 198, 32 (2011).CrossRefGoogle Scholar
Swallow, J.G., Kim, J.J., Kabir, M., Smith, J.F., Tuller, H.L., Bishop, S.R., and Van Vliet, K.J., Acta Materialia 105, 16 (2016).Google Scholar
Steele, B.C.H. and Heinzel, A., Nature 414, 345 (2001).Google Scholar
Yildiz, B., MRS Bulletin 39, 147 (2014).Google Scholar
Marrocchelli, D., Bishop, S.R., Tuller, H.L., and Yildiz, B., Adv. Funct. Mater. 22, 1958 (2012).Google Scholar
Bishop, S.R., Tuller, H.L., Kuru, Y., and Yildiz, B., J. Eur. Ceram. Soc. 31, 2351 (2011).Google Scholar
Kuru, Y., Marrocchelli, D., Bishop, S.R., Chen, D., Yildiz, B., and Tuller, H.L., J. Electrochem. Soc. 159, F799 (2012).Google Scholar
Chen, D., Bishop, S.R., and Tuller, H.L., Adv. Funct. Mater. 23, 2168 (2013).Google Scholar
Perry, N.H., Pergolesi, D., Bishop, S.R., and Tuller, H.L., Solid State Ionics 273, 18 (2015).Google Scholar
Kawada, T., Suzuki, J., Sase, M., Kaimai, A., Yashiro, K., Nigara, Y., Mizusaki, J., Kawamura, K., and Yugami, H., J. Electrochem. Soc. 149, E252 (2002).Google Scholar
Sheldon, B.W., Mandowara, S., and Rankin, J., Solid State Ionics 233, 38 (2013).Google Scholar
Chen, Q.N., Adler, S.B., and Li, J., Appl. Phys. Lett. 105, 201602 (2014).Google Scholar
Sheldon, B.W. and Shenoy, V.B., Phys. Rev. Lett, 106, 216104 (2011).Google Scholar
Chueh, W.C., McDaniel, A.H., Grass, M.E., Hao, Y., Jabeen, N., Liu, Z., Haile, S.M., McCarty, K.F., Bluhm, H., and El Gabaly, F., Chem. Mater. 24, 1876 (2012).CrossRefGoogle Scholar
Duncan, K.L., Wang, Y., Bishop, S.R., Ebrahimi, F., and Wachsman, E.D., J. Am. Ceram. Soc. 89, 3162 (2006).CrossRefGoogle Scholar
Wang, Y., Duncan, K., Wachsman, E.D., and Ebrahimi, F., Solid State Ionics 178, 53 (2007).CrossRefGoogle Scholar
Kushi, T., Sato, K., Unemoto, A., Hashimoto, S., Amezawa, K., and Kawada, T., J. Power Sources 196, 7989 (2011).Google Scholar
Bishop, S.R., Stefanik, T.S., and Tuller, H.L., J. Mater. Res. 27, 2009 (2012).Google Scholar
Chen, D. and Tuller, H.L., Adv. Funct. Mater. 24, 7638 (2014).Google Scholar
Swallow, J.G., Kim, J.J., Maloney, J.M., Chen, D., Smith, J.F., Bishop, S.R., Tuller, H.L., and Van Vliet, K.J., Nature Materials 16, 749 (2017).Google Scholar
Ma, D., Lu, Z., Tang, Y., Li, T., Tang, Z., and Yang, Z., Phys. Lett. A 378, 2570 (2014).Google Scholar
Hinterberg, J., Zacherle, T., and De Souza, R.A., Phys. Rev. Lett. 110, 205901 (2013).Google Scholar
Shu, D.-J., Ge, S.-T., Wang, M., and Ming, N.-B., Phys. Rev. Lett. 101, 116102 (2008).Google Scholar
Gopal, C.B., Garcia-Melchor, M., Lee, S.C., Shi, Y., Shavorskiy, A., Monti, M., Guan, Z., Sinclair, R., Bluhm, H., Vojvodic, A., and Chueh, W.C., Nature Commun. 8, 15360 (2017).Google Scholar
Kresse, G. and Furthmuller, J., Comput. Mater. Sci. 6, 15 (1996).Google Scholar
Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964).CrossRefGoogle Scholar
Kohn, W. and Sham, L.J., Phys. Rev. 140, A1133 (1965).Google Scholar
Perdew, J.P., Burke, K., and Ernzerhof, M., Physical Review B 77, 3865 (1996).Google Scholar
Kresse, G. and Joubert, D., Phys. Rev. B 59, 1758 (1999).Google Scholar
Anisimov, V.I., Zaanen, J., and Andersen, O.K., Phys. Rev. B 44, 943 (1991).Google Scholar
Dudarev, S.L., Botton, G.A., Savrasov, S.Y., Humphreys, C.J., and Sutton, A.P., Phys. Rev. B 57, 1505 (1998).Google Scholar
Dholabhai, P.P., Adams, J.B., Crozier, P., and Sharma, R., J. Chem. Phys. 132, 094104 (2010).Google Scholar
Alaydrus, M., Sakaue, M., and Kasai, H., Phys. Chem. Chem. Phys. 18, 12938 (2016).Google Scholar
Yang, Z., Woo, T.K., Baudin, M., and Hermansson, K., J. Chem. Phys. 120, 7741 (2004).Google Scholar
Psiachos, D., Hammerschmidt, T., and Drautz, R., Acta Materialia 59 4255 (2011).Google Scholar
Streitz, F.H., Cammarata, R.C., and Sieradzki, K., Phys. Rev. B 49, 10699 (1994).Google Scholar
Marrocchelli, D., Bishop, S.R., Tuller, H.L., Watson, G.W., and Yildiz, B., Phys. Chem. Chem. Phys. 14, 12070 (2012).Google Scholar
Wang, B., Xi, X., and Cormack, A.N., Chem. Mater. 26, 3687 (2014).Google Scholar
Feng, Z.A., El Gabaly, F., Ye, X., Shen, Z.-X., and Chueh, W.C., Nature Commun. 5, 1 (2014).Google Scholar
Supplementary material: PDF

Swallow et al. supplementary material

Swallow et al. supplementary material 1

Download Swallow et al. supplementary material(PDF)
PDF 187.4 KB