Published online by Cambridge University Press: 23 December 2016
It is known that microstructure of metallic polycrystalline materials irradiated with neutrons is often characterized by a high degree of heterogeneity in distribution of radiation-induced defects. Depleted zones are located along grain boundaries and their width is not only determined by irradiation temperature and damage dose, but also by migration of point defects and dislocations integrity, that makes it more difficult to interpret experimental results of this phenomenon. At present, denuded zones are still objects for investigation as they influence both operation characteristics of reactor materials and their safe long-term storage. In this work, denuded zones in hexagonal ducts of spent fuel assemblies constructed from 0.08C-16Cr-11Ni-3Mo and 0.12C-18Cr-10Ni-Ti stainless steels from BN-350 fast nuclear reactor were investigated by TEM. There were determined some irradiation parameters affecting the development of denuded zones and their width; void size distributions in near-grain boundary regions are presented. There was shown redistribution of alloying elements at grain boundaries using Energy-dispersive X-ray spectroscopy (EDS).