Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-26T08:00:55.940Z Has data issue: false hasContentIssue false

Crystal Lattice Dynamics of the Substitutional Solid Solutions in the Bi(Gd) - Fe - O and Bi(Nd) - Fe - O Systems

Published online by Cambridge University Press:  22 May 2018

Valery Sobol
Affiliation:
Belarusian State Pedagogical University, 18 Sovetskaya St., Minsk 220030, Belarus
Barys Korzun*
Affiliation:
The City University of New York, Borough of Manhattan Community College, 199 Chambers St., New York, NY 10007, U.S.A.
Cheslav Fedorcov
Affiliation:
Belarusian State Pedagogical University, 18 Sovetskaya St., Minsk 220030, Belarus
Olga Mazurenko
Affiliation:
Belarusian Republican Foundation for Fundamental Research, 66 Nezavisimosti Ave., Minsk 220072, Belarus
Temirkhan Bizhigitov
Affiliation:
Taraz State Pedagogical University, 62 Tole bi St., Taraz 080001, Kazakhstan
Sabit Tomaev
Affiliation:
Taraz State Pedagogical University, 62 Tole bi St., Taraz 080001, Kazakhstan
Bibara Nushnimbaeva
Affiliation:
Taraz State Pedagogical University, 62 Tole bi St., Taraz 080001, Kazakhstan
Sofia Egemberdieva
Affiliation:
Taraz State Pedagogical University, 62 Tole bi St., Taraz 080001, Kazakhstan
Altynbek Nauryzbaev
Affiliation:
Taraz State Pedagogical University, 62 Tole bi St., Taraz 080001, Kazakhstan
*
Get access

Abstract

The substitutional solid solutions in the Bi(Gd) - Fe - O and Bi(Nd) - Fe - O systems of the Bi1-xGdxFeO3 and Bi1-xNdxFeO3 types with x up to 0.20 were synthesized by the solid-state reaction method and investigated using X-ray diffraction analysis and infrared reflective spectrometry in the wavelength range from 12.5 to 24 μm. It was determined that the Bi1-xGdxFeO3 and Bi1-xNdxFeO3 crystal structure is a distorted form of perovskite, R3c space group. Two extremums at 18.2 μm (strong extremum) and 22.5 μm (rather weak extremum) on the infrared reflection spectra of the Bi1-xGdxFeO3 and Bi1-xNdxFeO3 solid solutions were discovered. The extremum at 18.2 μm corresponds to the Fe – O stretching vibrations and the extremum at 22.5 μm corresponds to the O - Fe – O bending vibrations of the FeO6 groups. The growth of reflectivity of the Bi1-xGdxFeO3 and Bi1-xNdxFeO3 solid solutions in comparison with pure BiFeO3 and the displacement of the reflectivity band maximum into the side of the spectrum with longer wavelengths with the increase of the atomic part of the substitutive element x up to 0.20 were found.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Skinner, S.M., IEEE Trans. Parts Mater. Packaging 6, 68 (1970).CrossRefGoogle Scholar
Roginskaya, Y.E., Venevtsev, Y.N., Fedulov, S.A., Zhdanov, G.S., Kristallografiya 8, 1224 (1965) [Sov. Phys. Crystallogr. 8, 490(1964)].Google Scholar
Polomska, M., Kaczmarek, W., Pajak, Z., Phys. Status Solidi A, 23, 567 (1974).CrossRefGoogle Scholar
Li, J.-B., Rao, G.H., Xiao, Y., Liang, J.K., Luo, J., Liu, G.Y., Chen, J.R., Acta Materialia 58 (10), 3701 (2010).CrossRefGoogle Scholar
Lazenka, V.V., Zhang, G., Vanacken, J., Makoed, I.I., Ravinski, A.F., Moshchalkov, V.V., Journal of Physics D: Applied Physics, 45 (12), 125002 (2012).CrossRefGoogle Scholar
Kumar, M., Sati, P.C., Chhoker, S., Sajal, V., Ceramics International 41, 777 (2015).CrossRefGoogle Scholar
Thang, D.V., Thao, D.T.X., Minh, N.V., Journal of Magnetics 21 (1), 29 (2016).CrossRefGoogle Scholar
Kumar, A., Varshney, D., Ceramics International 38, 3935 (2012).CrossRefGoogle Scholar
Klyndyuk, A., Chizhova, Y., Universal Journal of Materials Science 3 (1), 6 (2015).Google Scholar
Kamba, S., Nuzhnyy, D., Savinov, M., Šebek, J., Petzelt, J., Prokleška, J., Haumont, R., and Kreisel, J., Phys. Rev. B 75, 024403 (2007).CrossRefGoogle Scholar
Komandin, G.A., Torgashev, V.I., Volkov, A.A., Porodinkov, O.E., Fiz. Tv. Tela, 52 (4), 684 (2010).Google Scholar
Farhadi, S., Zaidi, M., Journal of Molecular Catalysis A: Chemical 299, 18 (2009).CrossRefGoogle Scholar
Koizumi, H., Nirizaki, N., Ikeda, T., Jpn. Appl. Phys. 3, 495 (1964).CrossRefGoogle Scholar
Speranskaya, E.I., Skorikov, V.M., Rode, E.Y., Terehova, V.A., Izv. AN SSSR. Ser. Chimicheskaya 5, 905 (1965).Google Scholar
Wu, H., Lin, Y.B., Gong, J.J., Zhang, F., Zeng, M., Qin, M.H., Zhang, Z., Ru, Q., Liu, Z.W., Gao, X.S., Liu, J.M., J. Phys. D Appl. Phys. 46, 145001 (2013).CrossRefGoogle Scholar
Lobo, R.P.S.M., Moreira, R.L., Lebeugle, D., Colson, D., Phys. Rev. B 76, 172105 (2007).CrossRefGoogle Scholar
Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, Fourth ed., Wiley, New York, 1986.Google Scholar