Published online by Cambridge University Press: 27 December 2019
The dysfunctional metabolism of glucose in cancer cells represents a new avenue for cancer targeting based on sugar-derived carriers. Here, glucose-derived carbon spheres (CS) were prepared through a simple hydrothermal method, yielding highly homogenous spherical particles that exhibited excellent stability in aqueous solution. The abundant presence of surface hydroxyl functionalities was used for a subsequent condensation of an amino silane that was the basis for further covalent coupling strategies. CS were modified with a cyclooctyne derivative providing a highly selective binding site for copper-free click reactions. Moreover, the surface modification of CS with a dye-label allowed for their intracellular detection revealing a preferential uptake of CS, compared to silica particles, in tumor cells. These results thus demonstrate the highly promising potential of glucose-derived particles for tumor targeting applications and their efficient surface modification.