Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T12:57:12.240Z Has data issue: false hasContentIssue false

A Comparative First-Principles Study of Lithium, Sodium and Magnesium Insertion Energetics in Brookite Titanium Dioxide

Published online by Cambridge University Press:  11 December 2018

Daniel Koch*
Affiliation:
National University of Singapore, Department of Mechanical Engineering, 9 Engineering Drive 1, Singapore117575; email: [email protected]
Sergei Manzhos
Affiliation:
National University of Singapore, Department of Mechanical Engineering, 9 Engineering Drive 1, Singapore117575; email: [email protected]
*
Get access

Abstract

Brookite titanium dioxide is investigated from first principles as possible insertion-type cathode material for Li, Na and Mg. Recently structural similarity of this phase and amorphous titanium dioxide was reported. Low-concentration insertion energies and the corresponding voltages, however, suggest poor electrochemical performance of brookite in comparison to e.g. layered titania phases such as B-TiO2. We argue that this behavior could be explained by local electronic structure leading to higher voltages in amorphous compounds, since the lattice strains induced by intercalation in brookite are not sufficient to explain the poor binding energies with the investigated metals.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Liu, C., Neale, Z.G. and Cao, G., Materials Today 19, 109 (2016).CrossRefGoogle Scholar
Nitta, N., Wu, F., Lee, J.T. and Yushin, G., Materials Today 18, 252 (2015).CrossRefGoogle Scholar
Gruber, P.W., Medina, P.A., Keoleian, G.A., Kesler, S.E., Everson, M.P. and Wallington, T.J., Journal of Industrial Ecology 15, 760 (2011).CrossRefGoogle Scholar
Muldoon, J., Bucur, C.B. and Gregory, T., Chemical Reviews 114, 11683 (2014).CrossRefGoogle Scholar
Ceder, G., Chiang, Y.M., Sadoway, D.R., Aydinol, M.K., Jang, Y.I. and Huang, B., Nature 392, 694 (1998).CrossRefGoogle Scholar
Madian, M., Eychmüller, A. and Giebeler, L., Batteries 4 (2018).CrossRefGoogle Scholar
Su, S., NuLi, Y., Huang, Z., Miao, Q., Yang, J. and Wang, J., ACS Applied Materials & Interfaces 8, 7111 (2016).CrossRefGoogle Scholar
Longoni, G., Pena Cabrera, R.L., Polizzi, S., D’Arienzo, M., Mari, C.M., Cui, Y. and Ruffo, R., Nano Letters 17, 992 (2017).CrossRefGoogle Scholar
Su, S., Huang, Z., NuLi, Y., Tuerxun, F., Yang, J. and Wang, J., Chemical Communications 51, 2641 (2015).CrossRefGoogle Scholar
Legrain, F., Malyi, O. and Manzhos, S., Journal of Power Sources 278, 197 (2015).CrossRefGoogle Scholar
Mavračić, J., Mocanu, F.C., Deringer, V.L., Csányi, G. and Elliott, S.R., The Journal of Physical Chemistry Letters 9, 2985 (2018).CrossRefGoogle Scholar
Bartók, A.P., Kondor, R. and Csányi, G., Physical Review B 87, 184115 (2013).CrossRefGoogle Scholar
De, S., Bartók, A.P., Csányi, G. and Ceriotti, M., Physical Chemistry Chemical Physics 18, 13754 (2016).CrossRefGoogle Scholar
José, M.S., Emilio, A., Julian, D.G., Alberto, G., Javier, J., Pablo, O. and Daniel, S.-P., Journal of Physics: Condensed Matter 14, 2745 (2002).Google Scholar
Hohenberg, P. and Kohn, W., Physical Review 136, B864 (1964).CrossRefGoogle Scholar
Kohn, W. and Sham, L.J., Physical Review 140, A1133 (1965).CrossRefGoogle Scholar
Junquera, J., Paz, Ó., Sánchez-Portal, D. and Artacho, E., Physical Review B 64, 235111 (2001).CrossRefGoogle Scholar
Anglada, E., Soler, J. M., Junquera, J. and Artacho, E., Physical Review B 66, 205101 (2002).CrossRefGoogle Scholar
Artacho, E., Sánchez-Portal, D., Ordejón, P., García, A. and Soler, J.M., physica status solidi (b) 215, 809 (1999).3.0.CO;2-0>CrossRefGoogle Scholar
Perdew, J.P., Burke, K. and Ernzerhof, M., Physical Review Letters 77, 3865 (1996).CrossRefGoogle Scholar
Perdew, J.P., Burke, K. and Ernzerhof, M., Physical Review Letters 78, 1396 (1997).CrossRefGoogle Scholar
Troullier, N. and Martins, J.L., Physical Review B 43, 1993 (1991).CrossRefGoogle Scholar
Monkhorst, H.J. and Pack, J.D., Physical Review B 13, 5188 (1976).CrossRefGoogle Scholar
Lloyd, S., IEEE Transactions on Information Theory 28, 129 (1982).CrossRefGoogle Scholar
Urban, A., Seo, D.-H. and Ceder, G., Npj Computational Materials 2, 16002 (2016).CrossRefGoogle Scholar
Koudriachova, M.V. and Matar, M., ECS Transactions 16, 63 (2009).CrossRefGoogle Scholar
Anji Reddy, M., Pralong, V., Varadaraju, U.V. and Raveau, B., Electrochemical and Solid-State Letters 11, A132 (2008).CrossRefGoogle Scholar
Koch, D., Kulish, V.V. and Manzhos, S., MRS Communications 7, 819 (2017).CrossRefGoogle Scholar
Smolinski, H., Gros, C., Weber, W., Peuchert, U., Roth, G., Weiden, M. and Geibel, C., Physical Review Letters 80, 5164 (1998).CrossRefGoogle Scholar