Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T05:36:07.673Z Has data issue: false hasContentIssue false

Chemical Vapor Transport Deposition of Stable Cubic CsPbI3 Optical Films on the Porous Alumina Substrate

Published online by Cambridge University Press:  10 April 2019

Cong Zhao
Affiliation:
Msinghua-Berkeley Shenzhen Institute(TBSI), Tsinghua University, Shenzhen, 518057, P. R. China
Shichao Zhao
Affiliation:
College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China
Yuanfang Zhao
Affiliation:
Msinghua-Berkeley Shenzhen Institute(TBSI), Tsinghua University, Shenzhen, 518057, P. R. China
Fang He
Affiliation:
Msinghua-Berkeley Shenzhen Institute(TBSI), Tsinghua University, Shenzhen, 518057, P. R. China
Ripeng Luo
Affiliation:
Renewable Energy Materials and Devices, University of Electronic Science and Technology of China, Chengdu, 611731P. R. China
Jingzhou Li
Affiliation:
Msinghua-Berkeley Shenzhen Institute(TBSI), Tsinghua University, Shenzhen, 518057, P. R. China
Shixi Zhao
Affiliation:
Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, P. R. China
Guodan Wei*
Affiliation:
Msinghua-Berkeley Shenzhen Institute(TBSI), Tsinghua University, Shenzhen, 518057, P. R. China
Feiyu Kang
Affiliation:
Msinghua-Berkeley Shenzhen Institute(TBSI), Tsinghua University, Shenzhen, 518057, P. R. China Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, P. R. China
*
Get access

Abstract

Cesium lead iodide perovskite (CsPbI3) with excellent optical and electrical properties have attracted numerous academic attentions. Specifically, the black cubic phase CsPbI3 with a direct band gap of 1.74 eV has been most appropriate materials for various optoelectronic applications, especially for photovoltaic (PV), Light-Emitting Diodes (LED) and photodetector applications1. However, the preferred cubic phase of bulk CsPbI3 (α-CsPbI3) is usually only stable at high temperatures and it will undergo an immediate phase transformation to orthorhombic phase (δ-CsPbI3) after fabrication at room temperature. In this work, we have discovered a convenient CVD method to investigate the growth behavior of the cubic α-CsPbI3 film on the porous alumina substrate. The lead iodide and cesium iodide were used as the precursors for the deposition of CsPbI3. The porous alumina with high surface area and large pore volume was used as growth substrate. It was shown that the porous alumina promoted the growth of CsPbI3 film by absorbing the precursor and increasing the nucleation density. The prepared CsPbI3 film emitted strong and stable red light under ultraviolet light excitation at room temperature and ambient atmosphere. The lead iodide was absorbed on the surface of the porous alumina firstly then reacted with cesiumiodide to form the CsPbI3. The successful preparation of the CsPbI3 by the direct CVD method paves the way for its large scale growth and application in optoelectronic devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Stranks, S. D., Eperon, G. E., Grancini, G., Menelaou, C., Alcocer, M. J., Leijtens, T., Herz, L. M., Petrozza, A. and Snaith, H. J. Science 342, 6156 (2013).CrossRefGoogle Scholar
Xing, G., Mathews, N., Sun, S., Lim, S. S., Lam, Y. M., Grätzel, M., Mhaisalkar, S. and Sum, T. C. Science 342, 6156 (2013).CrossRefGoogle Scholar
Nie, W., Tsai, H., Asadpour, R., Blancon, J.-C., Neukirch, A. J., Gupta, G., Crochet, J. J.,Chhowalla, M., Tretiak, S., Alam, M. A., Wang, H.-L. and Mohite, A. D. Science 347, 6221 (2015).CrossRefGoogle Scholar
Singh, P., Rana, P. J. S., Mukherjee, R. and Srivastava, P. Solar Energy 170 (2018).Google Scholar
Fu, Y., Zhu, H., Stoumpos, C. C., Ding, Q., Wang, J., Kanatzidis, M. G., Zhu, X. and Jin, S. ACS Nano 10, 8 (2016).Google Scholar
Ramasamy, P., Lim, D. H., Kim, B., Lee, S. H., Lee, M. S., and Lee, J. S. Chemical communications 52, 10(2016).CrossRefGoogle Scholar
Eperon, G. E., Paterno, G. M., Sutton, R. J., Zampetti, A., Haghighirad, A. A., Cacialli, F., and Snaith, H. J. Journal of Materials Chemistry A 3, 39 (2015).CrossRefGoogle Scholar
Hu, Y., Bai, F., Liu, X., Ji, Q., Miao, X., Qiu, T. and Zhang, S. Acs Energy Lett 2, 10 (2017).Google Scholar
Waleed, A., Tavakoli, M. M., Gu, L., Hussain, S., Zhang, D., Poddar, S., Wang, Z., Zhang, R. and Fan, Z. Nano Letters 17, 8 (2017).Google Scholar
Luo, P., Xia, W., Zhou, S., Sun, L., Cheng, J., Xu, C. and Lu, Y. The Journal of Physical Chemistry Letters 7, 18 (2016).CrossRefGoogle Scholar
Swarnkar, A., Marshall, A. R., Sanehira, E. M., Chernomordik, B. D., Moore, D. T., Christians, J. A., Chakrabarti, T. and Luther, J. M. Science 354, 6308 (2016).CrossRefGoogle Scholar
Liu, F., Zhang, Y., Ding, C., Kobayashi, S., Izuishi, T., Nakazawa, N., Toyoda, T., Ohta, T., Hayase, S., Minemoto, T., Yoshino, K., Dai, S. and Shen, Q. ACS Nano 11, 10 (2017).Google Scholar
Li, B., Zhang, Y., Fu, L., Yu, T., Zhou, S., Zhang, L. and Yin, L. Nature Communications 9, 1 (2018).Google Scholar
Tan, H., Jain, A., Voznyy, O., Lan, X., Garcia de Arquer, F. P., Fan, J. Z., Quintero-Bermudez, R., Yuan, M., Zhang, B., Zhao, Y., Fan, F., Li, P., Quan, L. N., Zhao, Y., Lu, Z.-H., Yang, Z., Hoogland, S. and Sargent, E. H. Science 355, 6326 (2017).Google Scholar
Luo, P., Xia, W., Zhou, S., Sun, L., Cheng, J., Xu, C. and Lu, Y. The Journal of Physical Chemistry Letters 7, 18 (2016).CrossRefGoogle Scholar
Waleed, A., Tavakoli, M. M., Gu, L. L., Hussain, S., Zhang, D. Q., Poddar, S., Wang, Z. Y., Zhang, R. J., Fan, Z. Y., Nano Letters 17, 4951 (2017).CrossRefGoogle Scholar