Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-05T04:57:01.676Z Has data issue: false hasContentIssue false

Chemical Vapor Growth of Silicon Phosphide Nanostructures

Published online by Cambridge University Press:  25 November 2019

Zhuoqun Wen
Affiliation:
Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180
Yiping Wang
Affiliation:
Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180
Jian Shi*
Affiliation:
Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180
*
*correspondence: [email protected]
Get access

Abstract

In the search for chemically stable two-dimensional (2D) materials with high in-plane mobility, proper bandgap, and compatibility with vapor-based fabrication, van der Waals semiconductor SiP has become a potential candidate as a robust variation of black phosphorous. While bulk SiP crystals were synthesized in the 1970s, the vapor-based synthesis of SiP nanostructures or thin films is still absent. We here report the first chemical vapor growth of SiP nanostructures on SiO2/Si substrate. SiP islands with lateral size up to 20 μm and showing well-defined Raman signals were grown on SiO2/Si substrate or on SiP-containing concentric rings. The presence of SiP phase is confirmed by XRD. The formation of rings and islands is explained by a multiple coffee ring growth model where a dynamic fluctuation of droplet growth front induces the topography of concentric ring surfaces. This new growth method might shed light on the controlled growth of group IV-III high-mobility 2D semiconductors.

Type
Articles
Copyright
Copyright © Materials Research Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

#

equally contributed

References

REFERENCES

Bolotin, K. I., Sikes, K. J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P. and Stormer, H. L., Solid State Commun. 146 (9), 351-355 (2008)CrossRefGoogle Scholar
Chhowalla, M., Shin, H. S., Eda, G., Li, L.-J., Loh, K. P. and Zhang, H., Nat. Chem. 5, 263 (2013).CrossRefGoogle Scholar
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. and Kis, A., Nat. Nanotechnol. 6 (3), 147-150 (2011).CrossRefGoogle Scholar
Xia, F., Wang, H. and Jia, Y., Nat. Commun. 5 (1), 4458 (2014).CrossRefGoogle Scholar
Liu, B., Köpf, M., Abbas, A. N., Wang, X., Guo, Q., Jia, Y., Xia, F., Weihrich, R., Bachhuber, F., Pielnhofer, F., Wang, H., Dhall, R., Cronin, S. B., Ge, M., Fang, X., Nilges, T. and Zhou, C., J. Adv. Mater. 27 (30), 4423-4429 (2015).CrossRefGoogle Scholar
Huang, B., Zhuang, H. L., Yoon, M., Sumpter, B. G. and Wei, S.-H., Phy. Rev. B 91 (12), 121401 (2015).CrossRefGoogle Scholar
Li, C., Wang, S., Zhang, X., Jia, N., Yu, T., Zhu, M., Liu, D. and Tao, X., CrystEngComm 19 (46), 6986-6991 (2017).CrossRefGoogle Scholar
Zhang, S., Shiying, G., Huang, Y., Zhu, Z., Cai, B., Xie, M. Q., Zhou, W. and Zeng, H., 2D Mater. 4, 015030 (2016).CrossRefGoogle Scholar
Donohue, P. C., Siemons, W. J. and Gillson, J. L., J. Phys. Chem. Solids 29 (5), 807-813 (1968).CrossRefGoogle Scholar
Binnewies, M., Glaum, R., Schmidt, M. and Schmidt, P., in Chemical vapor transport reactions (Walter De Gruyter Publisher, Berlin; Boston, 2012), p. 460.CrossRefGoogle Scholar
Liang, S.-M. and Schmid-Fetzer, R., J. Phase Equilib. Diff. 35 (1), 24-35 (2014).CrossRefGoogle Scholar
Hillel, R., Bec, C., Bouix, J., Michaelides, A., Monteil, Y., Tranquard, A. and Bernard, C., J. Electrochem. Soc. 129 (6), 1343-1347 (1982).CrossRefGoogle Scholar
Hillel, R., Bouix, J. and Michaélidès, A., Thermochim. Acta 38 (3), 259-269 (1980).CrossRefGoogle Scholar
Barreteau, C., Michon, B., Besnard, C. and Giannini, E., J. Cryst. Growth 443, 75-80 (2016).CrossRefGoogle Scholar
Deegan, R. D., Bakajin, O., Dupont, T. F., Huber, G., Nagel, S. R. and Witten, T. A., Nature 389 (6653), 827-829 (1997).CrossRefGoogle Scholar
Dettre, R. H. and Johnson, R. E., in Contact Angle, Wettability, and Adhesion (American Chemical Society, 1964), Vol. 43, pp. 136-144.CrossRefGoogle Scholar
Fischer, B. J., Langmuir 18 (1), 60-67 (2002).CrossRefGoogle Scholar
Marín, Á. G., Gelderblom, H., Lohse, D. and Snoeijer, J. H., Phy. Rev. Lett. 107 (8), 085502 (2011).CrossRefGoogle Scholar
Porter, D. A., Easterling, K. E. and Sherif, M., Phase Transformations in Metals and Alloys (CRC press, 2009) p. 44.Google Scholar
Shen, X., Ho, C.-M. and Wong, T.-S., J. Phys. Chem. B 114 (16), 5269-5274 (2010).CrossRefGoogle Scholar