Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T13:04:06.956Z Has data issue: false hasContentIssue false

Carrier Density Modulation in PbSe Quantum Dot Films via In-Solution Ligand Exchange

Published online by Cambridge University Press:  12 May 2020

Tom Nakotte
Affiliation:
Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM88003 Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
Hongmei Luo
Affiliation:
Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM88003
Jeff Pietryga*
Affiliation:
Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
*
*Correspondence [email protected]
Get access

Abstract

In-solution ligand exchange of PbSe QDs is used to examine the effect of capping ligand on the carrier density of PbSe QD films. Results show that carrier density can be modulated by a factor of 5 by choice of ligand without any additional post deposition treatments. Proper fabrication and measurement conditions for calculating carrier densities from C-V measurements using a sandwich structure on P-doped Si/SiO2/Al2O3/QD/Au structure capacitance devices are outlined. Combining carrier density results with field-effect-transistor measurements, promising ligands which display lower carrier densities without having a significant drop off in carrier mobility are identified as candidates for photodetection purposes.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kagan, C. R.; Lifshitz, E.; Sargent, E. H.; Talapin, D. V. Science 2016, 353, (6302).10.1126/science.aac5523CrossRefGoogle Scholar
Konstantatos, G.; Sargent, E. H. Infrared Physics & Technology 2011, 54, (3), 278282.CrossRefGoogle Scholar
Pietryga, J. M. S., Werder, R. D., Stewart, D., Klimov, M.H., Hollingsworth, V. I., , J. A. Journal of American Chemical Society 2004, 126, 1175211753.CrossRefGoogle Scholar
Schaller, R. D.; Agranovich, V. M.; Klimov, V. I. Nature Physics 2005, 1, (3), 189194.CrossRefGoogle Scholar
Zhang, C.; Xia, Y.; Zhang, Z.; Huang, Z.; Lian, L.; Miao, X.; Zhang, D.; Beard, M. C.; Zhang, J. Chemistry of Materials 2017, 29, (8), 36153622.CrossRefGoogle Scholar
Xing, X.; Liu, C.; Shang, W.; Qin, H.; Chen, Z.; Cao, F. Infrared Physics & Technology 2019, 98, 315322.CrossRefGoogle Scholar
Konstantatos, G.; Sargent, E. H. Nat Nanotechnol 2010, 5, (6), 391400.10.1038/nnano.2010.78CrossRefGoogle Scholar
Soole, J. B. D. S., , H. IEEE JOURNAL OF QUANTUM ELECTRONICS 1991, 27.10.1109/3.81384CrossRefGoogle Scholar
Coe, S.; Woo, W.-K.; Bawendi, M.; Bulović, V. Nature 2002, 420, (6917), 800803.CrossRefGoogle Scholar
Konstantatos, G.; Howard, I.; Fischer, A.; Hoogland, S.; Clifford, J.; Klem, E.; Levina, L.; Sargent, E. H. Nature 2006, 442, (7099), 180–3.Google Scholar
Luther, J. M.; Law, M.; Song, Q.; Perkins, C. L.; Beard, M. C.; Nozik, A. J. ACS Nano 2008, 2, (2), 271280.CrossRefGoogle Scholar
Lin, Q.; Yun, H. J.; Liu, W.; Song, H. J.; Makarov, N. S.; Isaienko, O.; Nakotte, T.; Chen, G.; Luo, H.; Klimov, V. I.; Pietryga, J. M. J Am Chem Soc 2017, 139, (19), 66446653.CrossRefGoogle Scholar
Liu, Y.; Tolentino, J.; Gibbs, M.; Ihly, R.; Perkins, C. L.; Liu, Y.; Crawford, N.; Hemminger, J. C.; Law, M. Nano Lett 2013, 13, (4), 1578–87.CrossRefGoogle Scholar
Ning, Z.; Voznyy, O.; Pan, J.; Hoogland, S.; Adinolfi, V.; Xu, J.; Li, M.; Kirmani, A. R.; Sun, J. P.; Minor, J.; Kemp, K. W.; Dong, H.; Rollny, L.; Labelle, A.; Carey, G.; Sutherland, B.; Hill, I.; Amassian, A.; Liu, H.; Tang, J.; Bakr, O. M.; Sargent, E. H. Nat Mater 2014, 13, (8), 822–8.CrossRefGoogle Scholar
Zarghami, M. H. L., Gibbs, Y., Gebremichael, M., Webster, E., Law, C., , M. ACS Nano 2010, 4, 24752485.CrossRefGoogle Scholar
Brown, P. R. K., Lunt, D., Zhao, R.R., Bawendi, N., Grossman, M.G., Bulovic, J.C., , V. ACS Nano 2014, 8, 58635872.CrossRefGoogle Scholar
Oh, S. J.; Berry, N. E.; Choi, J. H.; Gaulding, E. A.; Lin, H.; Paik, T.; Diroll, B. T.; Muramoto, S.; Murray, C. B.; Kagan, C. R. Nano Lett 2014, 14, (3), 1559–66.CrossRefGoogle Scholar
Oh, S. J.; Berry, N. E.; Choi, J.-H.; Gaulding, E. A.; Paik, T.; Hong, S.-H.; Murray, C. B.; Kagan, C. R. ACS Nano 2013, 7, (3), 24132421.CrossRefGoogle Scholar
Hassinen, A.; Moreels, I.; De Nolf, K.; Smet, P. F.; Martins, J. C.; Hens, Z. Journal of the American Chemical Society 2012, 134, (51), 2070520712.CrossRefGoogle Scholar
Crisp, R. W.; Kroupa, D. M.; Marshall, A. R.; Miller, E. M.; Zhang, J.; Beard, M. C.; Luther, J. M. Scientific Reports 2015, 5, (1), 9945.CrossRefGoogle Scholar
Bae, W. K.; Joo, J.; Padilha, L. A.; Won, J.; Lee, D. C.; Lin, Q.; Koh, W.-k.; Luo, H.; Klimov, V. I.; Pietryga, J. M. Journal of the American Chemical Society 2012, 134, (49), 2016020168.CrossRefGoogle Scholar
Leschkies, K. S.; Kang, M. S.; Aydil, E. S.; Norris, D. J. The Journal of Physical Chemistry C 2010, 114, (21), 99889996.CrossRefGoogle Scholar
Germanium (Ge), intrinsic carrier concentration: Datasheet from Landolt-Börnstein - Group III Condensed Matter ⋅ Volume 41A1β: “Group IV Elements, IV-IV and III-V Compounds. Part b - Electronic, Transport, Optical and Other Properties” in SpringerMaterials (https://doi.org/10.1007/10832182_503), Springer-Verlag Berlin Heidelberg: 2002.CrossRefGoogle Scholar