Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T18:35:14.880Z Has data issue: false hasContentIssue false

Cadmium Tin Oxide and Zinc Magnesium Oxide Prepared by Hollow Cathode Sputtering for CdTe Photovoltaics

Published online by Cambridge University Press:  05 June 2017

Alan E. Delahoy*
Affiliation:
CNBM New Energy Materials Research Center, Department of Physics, New Jersey Institute of Technology, Newark, NJ, USA
Shou Peng
Affiliation:
Bengbu Design and Research Institute for Glass Industry, Bengbu, China China Triumph International Engineering Co. Ltd., Shanghai, China
Payal Patra
Affiliation:
New Jersey Innovation Institute, Newark, NJ, USA
Surya Manda
Affiliation:
CNBM New Energy Materials Research Center, Department of Physics, New Jersey Institute of Technology, Newark, NJ, USA
Akash Saraf
Affiliation:
CNBM New Energy Materials Research Center, Department of Physics, New Jersey Institute of Technology, Newark, NJ, USA
Yunfei Chen
Affiliation:
CNBM New Energy Materials Research Center, Department of Physics, New Jersey Institute of Technology, Newark, NJ, USA
Xuehai Tan
Affiliation:
CNBM New Energy Materials Research Center, Department of Physics, New Jersey Institute of Technology, Newark, NJ, USA
Ken K. Chin
Affiliation:
CNBM New Energy Materials Research Center, Department of Physics, New Jersey Institute of Technology, Newark, NJ, USA
*
Get access

Abstract

This work reports the fabrication and characterization of superstrate-type Zn1-xMgxO/CdTe heterojunction solar cells on both CdxSnyO and commercial SnO2:F transparent conducting oxides (TCOs) in which the ZMO and CTO layers are produced for the first time by hollow cathode sputtering. The sputtering is conducted in a reactive mode using metal or alloyed metal targets fitted to a custom-made linear cathode. It is notable that the CdS buffer layer conventionally employed in CdTe solar cells is entirely replaced by the ZMO window layer. The use of ZMO is found to eliminate the blue loss associated with CdS optical absorption and further results in a higher open-circuit voltage. Key parameters were found to be the conduction band offset at the ZMO/CdTe interface and the ZMO thickness. It was discovered that the ZMO exhibits intense photoluminescence even at room temperature. Most of the solar cells were fabricated in the FTO/ZMO/CdTe configuration although CTO/ZMO/CdTe solar cells were also demonstrated. The CTO was produced with an electron mobility of 46 cm2 V-1s-1 without any post-deposition annealing or treatment.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wu, X., Keane, J.C., Dhere, R.G., DeHart, C., Albin, D.S., Duda, A., Gessert, T.A., Asher, S., Levi, D.H., and Sheldon, P., Proc. 17th Eur. Photovolt. Sol. Energy Conf. (James & James Ltd., London, 2001) pp. 9951000.Google Scholar
Minemoto, T., Hashimoto, Y., Shams-Kolahi, W., Satoh, T., Negami, T., Takakura, H., and Hamakawa, Y., Sol. Energy Mater. Sol. Cells 75, 121126 (2003).CrossRefGoogle Scholar
Yamada, A., Matsubara, K., Sakurai, K., Ishizuka, S., Tampo, H., Fons, P.J., Iwata, K., and Niki, S., Appl. Phys. Lett. 85, 56075609 (2004).CrossRefGoogle Scholar
Duenow, J.N., Burst, J.M., Albin, D.S., Reese, M.O., Jensen, S.A., Johnston, S.W., Kuciauskas, D., Swain, S.K., Ablekim, T, Lynn, K.G., Fahrenbruch, A.L., and Metzger, W.K., IEEE J. Photovolt. 6, 16411644 (2016).CrossRefGoogle Scholar
Swanson, D.E., Sites, J.R., and Sampath, W.S., Sol. Energy Mater. Sol. Cells 159, 389394 (2017).CrossRefGoogle Scholar
Gloeckler, M., Sankin, I., and Zhao, Z., IEEE J. Photovolt. 3, 13891393 (2013).CrossRefGoogle Scholar
Burst, J.M., Duenow, J.N., Albin, D.S., Colegrove, E., Reese, M.O., Aguiar, J.A., Jiang, C-S., Patel, M.K., Al-Jassim, M.M., Kuciauskas, D, and Swain, S., Nat. Energy 1, 16015, (2016).CrossRefGoogle Scholar
Zhao, Y., Boccard, M., Liu, S., Becker, J., Zhao, X-H., Campbell, C.M., Suarez, E., Lassise, M.B., Holman, Z., and Zhang, Y-H., Nat. Energy 1, 16067 (2016).CrossRefGoogle Scholar
Delahoy, A.E., Falk, S., Patra, P., Korotkov, R., Siepchen, B., Peng, S., and Chin, K.K., 43rd IEEE Photovolt. Specialist Conf. 14431448 (2016).Google Scholar
Delahoy, A.E. and Guo, S., Transparent Conductive Oxides for Photovoltaics, Chapter 17 in Handbook of Photovoltaic Science and Engineering, 2 nd Edition, Edited by Luque, A. and Hegedus, S. (Wiley, Chichester, 2011) pp. 716796.Google Scholar
Krishnakumar, V., Späth, B., Drost, C., Kraft, C., Siepchen, B., Delahoy, A., Tan, X., Chin, K., Peng, S., Hirsch, D., Zywitzki, O., Modes, T., and Morgner, H., Thin Solid Films (2016).Google Scholar
Mamazza, R., Morel, D.L., and Ferekides, C.S., Thin Solid Films 484, 2633 (2005).CrossRefGoogle Scholar
Meng, T., McCandless, B., Buchanan, W., Kimberly, E., and Birkmire, R., J. Alloy Compd. 556, 3944 (2013).CrossRefGoogle Scholar
Leja, E., Stapiński, T., and Marszałek, K., Thin Solid Films 125, 119122 (1985).CrossRefGoogle Scholar
Zhang, S.B. and Wei, S.H., Appl. Phys. Lett. 80, 13761378 (2002).CrossRefGoogle Scholar
Shannon, R.D., Acta Cryst. A32, 751767 (1976).CrossRefGoogle Scholar
Lorenz, M., Kaidashev, E.M., Von Wenckstern, H., Riede, V., Bundesmann, C., Spemann, D., Benndorf, G., Hochmuth, H., Rahm, A., Semmelhack, H.C., and Grundmann, M., Solid-St. Electron. 47, 22052209 (2003).CrossRefGoogle Scholar
Shibata, H., Tampo, H., Matsubara, K., Yamada, A., Sakurai, K., Ishizuka, S., Niki, S., and Sakai, M., Appl. Phys. Lett. 90, 124104 (2007).CrossRefGoogle Scholar
Trunk, M., Venkatachalapathy, V., Galeckas, A., and Kuznetsov, A.Y., Appl. Phys. Lett. 97, 211901 (2010).CrossRefGoogle Scholar
Li, J.V., Li, X., Yan, Y., Jiang, C-S., Metzger, W.K., Repins, I.L., Contreras, M.A., and Levi, D.H., J. Vac. Sci. Technol. B 27, 23842389 (2009).CrossRefGoogle Scholar
Erfurth, F., Grimm, A., Palm, J., Niesen, T.P., Reinert, F., Weinhardt, L., and Umbach, E., Appl. Phys. Lett. 98, 142107 (2011).CrossRefGoogle Scholar
Lee, C.S., Kim, S., Shin, Y.M., Park, B.G., Ahn, B.T., and Kwon, H., RSC Adv. 4, 3678436790 (2014).CrossRefGoogle Scholar
Song, T., Kanevce, A., and Sites, J.R., J. Appl. Phys. 119, 233104 (2016).CrossRefGoogle Scholar
Sites, J., Munshi, A., Kephart, J., Swanson, D., and Sampath, W.S., 43rd IEEE Photovolt. Specialist Conf. 36323635 (2016).Google Scholar
Delahoy, A.E., Akhtar, M., Cambridge, J., Chen, L., Govindarajan, R., Guo, S., and Romero, M.J., 29th IEEE Photovolt. Specialist Conf. 640643 (2002).Google Scholar
Törndahl, T., Platzer-Björkman, C., Kessler, J., and Edoff, M., Prog. Photovolt: Res. Appl. 15, 225235 (2007).CrossRefGoogle Scholar
Kephart, J.M., McCamy, J.W., Ma, Z., Ganjoo, A., Alamgir, F.M., and Sampath, W.S., Sol. Energy Mater. Sol. Cells 157, 266275 (2016).CrossRefGoogle Scholar
Delahoy, A.E., Cheng, Z., and Chin, K.K., 39th IEEE Photovolt. Specialist Conf. 1945-1948 (2013).Google Scholar