Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T08:08:07.196Z Has data issue: false hasContentIssue false

Buckling on stanene: the role played by spin-orbit coupling and pseudo Jahn-Teller effect

Published online by Cambridge University Press:  06 February 2017

J. R. Soto*
Affiliation:
Facultad de Ciencias, Universidad Nacional Autónoma de México, Apdo. Postal 70- 646, 04510 México, D.F.
B. Molina
Affiliation:
Facultad de Ciencias, Universidad Nacional Autónoma de México, Apdo. Postal 70- 646, 04510 México, D.F.
J. J. Castro
Affiliation:
Departamento de Física, CINVESTAV del IPN, Apdo. Postal 14-740, 07000 MéxicoD.F. México.
*
Get access

Abstract

Two-dimensional group IV layers beyond graphene, as silicene, germanene and the Sn-based stanene, have been recently synthesized by molecular beam epitaxy. Density Functional Theyory (DFT) calculations predict low-buckled structures for these 2D nanosheets, with a hexagonal honeycomb conformation, typical of the graphene-like surfaces. The buckling parameter δ increases from Si to Sn-based layers, with a maximum predicted of 0.92 Å for stanene. High-buckled structures for these materials resulted to be unstable. We have previously shown that for silicene and germanene, the origin of the buckled structure resides on the pseudo Jahn-Teller puckering distortion, resulting from non-adiabatic effects. It has been shown that hexagermabenzene, the single hexagonal unit of germanene, is subject to a strong vibronic coupling whose origin is the pseudo Jahn-Teller effect. This coupling resulted to be around ten times larger than the one obtained for hexasilabenzene. For stanene, an additional effect needs to be considered to understand the origin of buckling: the spin-orbit coupling (SOC). This SOC contributes to open an electronic band gap, enabling the use of these layers as nanoelectronic components. In this work, we present an analysis based on DFT in the Zeroth-Order Regular Approximation (ZORA) for both scalar relativistic and spin-orbit versions that quantify the influence of the spin-orbit coupling in the puckering of Sn6H6. Also, under the linear vibronic coupling model between the ground and the lowest excited states, we present the pseudo Jahn-Teller contribution. The scalar ZORA approximation is used to perform time-dependent DFT calculations to incorporate the low-energy excitations contributions. Our model leads to the determination of the coupling constants and predicts simultaneously the Adiabatic Potential Energy Surface behavior for the ground and excited states around the maximum symmetry point. These values allow us to compare the Jahn-Teller relevance in buckling with the other group IV layers.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Vogt, P., De Padova, P., Quaresima, C., Avila, J., Frantzeskakis, E., Asensio, M. C., Resta, A., Ealet, B., and Le Lay, G., Physical Review Letters 108, 155501 (2012).CrossRefGoogle Scholar
Fleurence, A., Friedlein, R., Ozaki, T., Kawai, H., Wang, Y., and Yamada-Takamura, Y., Physical Review Letters 108, 245501 (2012).Google Scholar
Meng, L. et al. ., Nano letters 13, 685 (2013).Google Scholar
Kim, U., Kim, I., Park, Y., Lee, K.-Y., Yim, S.-Y., Park, J.-G., Ahn, H.-G., Park, S.-H., and Choi, H.-J., ACS Nano 5, 2176 (2011).Google Scholar
Vogt, P., Capiod, P., Berthe, M., Resta, A., De Padova, P., Bruhn, T., Le Lay, G., and Grandidier, B., Applied Physics Letters 104, 021602 (2014).Google Scholar
Tao, L., Cinquanta, E., Chiappe, D., Grazianetti, C., Fanciulli, M., Dubey, M., Molle, A., and Akinwande, D., Nat Nanotechnol. 10, 227 (2015).Google Scholar
Zhao, I. et al. ., Progress in Materials Science 83, 24 (2016).Google Scholar
Li, L., Lu, S.-z., Pan, J., Qin, Z., Wang, Y.-q., Wang, Y., Cao, G.-y., Du, S., and Gao, H.-J., Advanced Materials 26, 4820 (2014).CrossRefGoogle Scholar
Dávila, M. E., Xian, L., Cahangirov, S., Rubio, A., and Lay, G. L., New Journal of Physics 16, 095002 (2014).Google Scholar
Derivaz, M., Dentel, D., Stephan, R., Hanf, M. C., Mehdaoui, A., Sonnet, P., and Pirri, C., Nano Letters 15, 2510 (2015).Google Scholar
Davila, M. E. and Le Lay, G., Scientific Reports 6, 20714 (2016).Google Scholar
Acun, A. et al. , Journal of Physics: Condensed Matter 27, 443002 (2015).Google Scholar
Zhu, F.-f. et al. , Nature Materials 14, 1020 (2015).CrossRefGoogle Scholar
Saxena, S., Chaudhary, R. P., and Shukla, S., Scientific Reports 6 (2016).Google Scholar
Takeda, K. and Shiraishi, K., Physical Review B 50, 14916 (1994).Google Scholar
Guzmán-Verri, G. G. and Lew Yan Voon, L. C., Physical Review B 76, 075131 (2007).Google Scholar
Cahangirov, S., Topsakal, M., Aktürk, E., Şahin, H., and Ciraci, S., Physical Review Letters 102, 236804 (2009).CrossRefGoogle Scholar
Xu, Y. et al. , Physical Review Letters 111, 136804 (2013).Google Scholar
Bersuker, I. B., Jahn-Teller Effect (Cambridge Univ Press, Cambridge, 2006).Google Scholar
Bersuker, I. B., Chemical Reviews 113, 1351 (2013).Google Scholar
Soto, J. R., Molina, B., and Castro, J. J., Physical Chemistry Chemical Physics 17, 7624 (2015).Google Scholar
Soto, J. R., Molina, B., and Castro, J. J., RSC Advances 4, 8157 (2014).Google Scholar
Soto, J. R., Molina, B., and Castro, J. J., MRS Advances 1, 1591 (2016).CrossRefGoogle Scholar
Liu, C.-C., Feng, W., and Yao, Y., Physical Review Letters 107, 076802 (2011).Google Scholar
Liu, C.-C., Jiang, H., and Yao, Y., Physical Review B 84, 195430 (2011).Google Scholar
ADF 2013, SCM. Theoretical Chemistry, Vrije Universiteit, Amsterdam, Netherlands. Available at: http://www.scm.com (accessed 30 January 2017).Google Scholar