Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-10T19:48:16.307Z Has data issue: false hasContentIssue false

Bio-inspired Nickel Oxides Nanoscale Synthesis by using Peel of Citrus Sinensis

Published online by Cambridge University Press:  27 April 2020

A. Fall*
Affiliation:
Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Old Faure road,7129, Somerset West, South Africa UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk ridge, P.O. Box 392, Pretoria-South Africa Photonics and Nano-Fabrication Laboratory, Faculty of Science and Technics, University Cheikh Anta Diop of Dakar (UCAD) B.P. 5005 Dakar-Fann Dakar, Senegal
N. Mayedwa
Affiliation:
Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Old Faure road,7129, Somerset West, South Africa UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk ridge, P.O. Box 392, Pretoria-South Africa
R. Bucher
Affiliation:
Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Old Faure road,7129, Somerset West, South Africa UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk ridge, P.O. Box 392, Pretoria-South Africa
B. D. Ngom
Affiliation:
Photonics and Nano-Fabrication Laboratory, Faculty of Science and Technics, University Cheikh Anta Diop of Dakar (UCAD) B.P. 5005 Dakar-Fann Dakar, Senegal
M. Maaza
Affiliation:
Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Old Faure road,7129, Somerset West, South Africa UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk ridge, P.O. Box 392, Pretoria-South Africa
*
Get access

Abstract

This contribution provides the synthesis and characterization of nickel oxide nanoparticles (NiO NPs) which were prepared by green synthesis method using natural extract oranges peel skin (Peel Citrus Sinensis) as an effective bio-oxidizing/bio-reducing agent. The effect of different calcination temperatures on the size of the NiO NPs was investigated. The prepared nanoparticles were characterized by various techniques such as X-rays diffraction (XRD) results indicated that all the samples have a face-centered cubic (FCC) structure and confirmed the presence of high degree of crystallinity nature NiO NPs. The functional group composition of NiO NPs were investigated by using attenuated total reflection-Fourier transform infrared (ART-FTIR), Photoluminescence (PL), and Scanning electron microscopy (SEM).

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bashir, A.K.H., Matinise, N., Sackey, J., Kaviyarasu, K.Madiba, I.G., kodset, L., Maaza, M.. Physica E: Low-dimensional Systems and Nanostructures,119, 114002 (2020).CrossRefGoogle Scholar
Makhlouf, A.S., Parker, T. F., Spada, E.F., Berkowitz, A.E.. Applied physics, 81, 5561-5563 (1997).CrossRefGoogle Scholar
Patil, C.K., Aruna, T.S.., Ekambaram, S.. Current opinion in solid state and materials science, 2, 158-165 (1997).CrossRefGoogle Scholar
Peterson, L.M., Brown, J. R., Gordon, E., Parks, A.G., Stein, C.L.. Geochimica et Cosmochimica Acta, 61, 3399-3412 (1997).CrossRefGoogle Scholar
Iwueke, D. C., Amaechi, C. I., Nwanya, A. C., Ekwealor, A. B. C., Asogwa, P. U., Osuji, R. U., Maaza, M., Ezema, F. I.. Materials Science: Materials in Electronics, 26, 2236-2242 (2015).Google Scholar
Ezema, F.I., Ekwealor, A.B.C., Osuji, R.U.. Superficies y vacío, 21, 6-10 (2008).Google Scholar
O Ijeh, R., Nwanya, A.C., Nkele, A.C., Madiba, I.G., Khumalo, Z., Bashir, A.K.H., Ezema, F.I.. Physica E: Low-dimensional Systems and Nanostructures, 113, 233-239 (2019).CrossRefGoogle Scholar
Ferreira, G.L., Teles, K.L.., Marques, M.. arXiv preprint arXiv, 0910. 4485 (2009).Google Scholar
Nwanya, A.C., Offlah, S.U., Amaechi, I.C., Agbo, S.Ezugwu, S.C., Sone, B., Ezema, F.I.. Electrochemical Acta, 171, 128-141 (2015).CrossRefGoogle Scholar
Sheena, A.P., Priyanka, P.K., Aloysius, N. S., Sabu, B., Varghese, T.. Phys Chem Math, 5 441-449 (2014).Google Scholar
Wu, Y, He, Y, Wu, T, Chen, T, Weng, W, Wan, H. Mater Lett, 61, 3174-3178 (2007).CrossRefGoogle Scholar
Kane, A. O., Ngom, B. D., Sakho, O., Zongo, S., Ndiaye, N. M., Ndlangamandla, C. L., Maaza, M.. MRS Advances, 3, 42-43 (2018).CrossRefGoogle Scholar
Bashir, A.K. H., Mayedwa, N., Kaviyarasu, K., Razanamahandry, L.C., Matinise, N., Bharuth-Ram, K., Maaza, M.. Surfaces and Interfaces, 17, 100345 (2019).CrossRefGoogle Scholar
Nwanya, A.C., Ndipingwi, M.M., Ikpo, C.O., Obodo, R.O., Nwanya, S.C., Botha, S., Maaza, M.. Alloys and Compounds, 22, 153581 (2020).CrossRefGoogle Scholar
Sinclair, W. B., Bartholomew, E. T., Ramsey, R. C.. Plant Physiology, 20, 1-3 (1945).CrossRefGoogle Scholar
Parish, M. E., Narciso, J. A. and Friedrich, L. M.. Food Safety, 17, 273-281 (1997).CrossRefGoogle Scholar
Goux, C.. Canadian Metallurgical Quarterly,13, 9-31 (1974).CrossRefGoogle Scholar
Suryanarayana, C., Norton, M.G.. Springer Science & Business Media, 13, 515 (2013).Google Scholar
Holzwarth, U., Gibson, N.. Nature nanotechnology, 6, 534-534 (2011).CrossRefGoogle Scholar
Zorkipli, N.N.M., Kaus, N. H. M., Mohamad, A. A.. Procedia Chemistry, 19, 626-631 (2016).CrossRefGoogle Scholar
Nwankwo, U., Bucher, R., Ekwealor, A. B. C. S., Maaza, M., Ezema, F.I.. Vacuum, 161 49-54 (2019).CrossRefGoogle Scholar
H Bashir, A.K., Razanamahandry, L.C., Nwanya, A.C., Saban, W., Mohamed, H.E.A., Maaza, M.. Physics and Chemistry of Solids, 134, 133-140 (2019).CrossRefGoogle Scholar
Tietel, Z., Plotto, A., Fallik, E., Lewinsohn, E, Porat, R.. Science of Food and Agriculture, 91, 14-23 (2011).CrossRefGoogle Scholar
El hadi, M., Zhang, F. J., Wu, F.F., Zhou, C.H., J. Tao. Molecules, 18, 8200-8229 (2013).CrossRefGoogle Scholar
Kumari, L., Li, Z.W., Vannoy, H.C., Leblanc, M.R., , Z.D.Experimental and Industrial Crystallography, 44, 495-499 (2009).Google Scholar
Magdalane, M. C., Kaviyarasu, K., Raaja, A., Arularasu, M.V., Mola, G.T., Isaev, A.B.. Photochemistry and Photobiology B: Biology,185, 275-282 (2018).CrossRefGoogle Scholar
Reddy, S. Y., Magdalane, M. C., Kaviyarasu, K., Mola, G.T., Kennedy, J., Maaza, M.. Physics and Chemistry of Solids, 123, 43-51 (2018).CrossRefGoogle Scholar
Saravanakkumar, D., Sivaranjani, S., Kaviyarasu, K., Ayeshamariam, A., Ravikumar, B., Pandiarajan, S., Maaza, M.. Semiconductors, 39, 033001 (2018).CrossRefGoogle Scholar
Sithole, J., Ngom, B. D., Khamlich, S., Manikanadan, E., Manyala, N., Saboungi, M.L., Maaza, M.. Applied surface science, 258, 7839-7843 (2012).CrossRefGoogle Scholar
Vijaya, J.J., Jayaprakash, N., Kombalah, K., Kaviyarasu, K., Kennedy, L.J., Ramalingam, R.J., Maaza, M.. Photochemistry and Photobiology B: Biology,177, 62-68 (2017).CrossRefGoogle Scholar
Khalil, A. T., Ovais, M.U.I., Ali, M., Shinwari, Z.K., Maaza, M.. Arabian Chemistry, 13, 606-619 (2017).CrossRefGoogle Scholar