Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-27T00:03:52.229Z Has data issue: false hasContentIssue false

Band Alignment of CdS/Cu2ZnSnSe4 Heterointerface and Solar Cell Performances

Published online by Cambridge University Press:  24 April 2017

Takehiko Nagai*
Affiliation:
Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology (AIST), Central 2 Umezono 1-1-1, Tsukuba, Ibaraki 305-8568, Japan
Shinho Kim
Affiliation:
Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology (AIST), Central 2 Umezono 1-1-1, Tsukuba, Ibaraki 305-8568, Japan
Hitoshi Tampo
Affiliation:
Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology (AIST), Central 2 Umezono 1-1-1, Tsukuba, Ibaraki 305-8568, Japan
Kang Min Kim
Affiliation:
Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology (AIST), Central 2 Umezono 1-1-1, Tsukuba, Ibaraki 305-8568, Japan
Hajime Shibata
Affiliation:
Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology (AIST), Central 2 Umezono 1-1-1, Tsukuba, Ibaraki 305-8568, Japan
Shin’ichi Takaki
Affiliation:
Kagoshima University, Korimoto 1-21-40, Kagoshima 890-0065, Japan
Kenta Kawasaki
Affiliation:
Kagoshima University, Korimoto 1-21-40, Kagoshima 890-0065, Japan
Suehiro Kawamura
Affiliation:
Kagoshima University, Korimoto 1-21-40, Kagoshima 890-0065, Japan
Takuya Shimamura
Affiliation:
Kagoshima University, Korimoto 1-21-40, Kagoshima 890-0065, Japan
Koji Matsubara
Affiliation:
Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology (AIST), Central 2 Umezono 1-1-1, Tsukuba, Ibaraki 305-8568, Japan
Shigeru Niki
Affiliation:
Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology (AIST), Central 2 Umezono 1-1-1, Tsukuba, Ibaraki 305-8568, Japan
Norio Terada
Affiliation:
Kagoshima University, Korimoto 1-21-40, Kagoshima 890-0065, Japan
*
Get access

Abstract

We determined that the conduction band offset (CBO) and the valence band offset (VBO) at the CdS/ Cu2ZnSnSe4 (CZTSe) heterointerface are +0.56 and +0.89eV, respectively, by using X-ray photoemission spectroscopy (XPS), ultraviolet photoemission spectroscopy (UPS) and inversed photoemission spectroscopy (IPES). A positive CBO value, so-called “spike” structure, means that the position of conduction band becomes higher than that of absorber layer. The evaluated CBO of +0.56 eV suggests that the conduction band alignment at CdS/CZTSe interface is enough to become an electron barrier. Despite such a large spike structure in the conduction band at the interface, a conversion efficiency of 8.7 % could be obtained for the CdS/CZTSe heterojunction solar cells.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Katagiri, H., Jimbo, K., Maw, W. S., Oishi, K., Yamazaki, M., and Takeuchi, A., Thin Solid Films 517, 2455 (2009).CrossRefGoogle Scholar
Todorov, T. K., Reuter, K. B. and Mitzi, D. B., Adv. Mater. 22, E156 (2010).CrossRefGoogle Scholar
Wang, W., Winkler, M. T., Gunawan, O., Gokmen, T., Todorov, T. K., Zhu, Y., and Mitzi, D. B., Adv. Energy Mater. 4, 1301465 (2014).Google Scholar
Kim, K. M., Liao, K. H., Tampo, H., Shibata, H., and Niki, S., Appl. Phys. Express 8, 042301 (2015).CrossRefGoogle Scholar
Kim, K. M., Kim, S., Tampo, H., Shibata, H., Matsubara, K., and Niki, S., Mater. Lett. 78-82, 176 (2016).Google Scholar
Repins, I., Beall, C., Vora, N., Dehart, C., Kuciauskas, D., Dippo, P., To, B., Mann, J., Hsu, W.-C., Goodrich, A., and Noufi, R., Sol. Energy Mater. Sol. Cells 101, 154 (2012).Google Scholar
Chen, S. Y., Gong, X. G., Walsh, A., and Wei, S. H., Appl. Phys. Lett. 94, 041903 (2009).CrossRefGoogle Scholar
Salomé, P. M. P., Malaquias, J., Fernandes, P. A., Ferreira, M. S., da Cunha, A. F., Leitão, J. P., González, J. C., and Matinaga, F. M., Sol. Energy Mater. Sol. Cells 101, 147 (2012).Google Scholar
Minemoto, T., Matsui, T., Takakura, H., Hamakawa, Y., Negami, T., Hashimoto, Y., Uenoyama, T., and Kitagawa, M., Sol. Energy Mater. Sol. Cells 67, 83 (2001).CrossRefGoogle Scholar
Gloeckler, M. and Sites, J. R., Thin Solid Films 480-481, 241 (2005).CrossRefGoogle Scholar
Terada, N., Morita, H., Chochi, K., Yoshimoto, S., Mitsunaga, M., Ishizuka, S., Shibata, H., Yamada, A., Matsubara, K., and Niki, S., Jpn. J. Appl. Phys. 53, 05FW09 (2014).Google Scholar
Paier, J., Asahi, R., Nagoya, A., and Kresse, G., Phys. Rev. B 79, 115126 (2009).Google Scholar
Chen, S., Waish, A., Yang, J.-W., Gong, X.-G., Sun, L., Yang, P.-X., Chu, J.-H., and Wei, S.-W., Phys. Rev. B 83, 125201 (2011).Google Scholar
Bär, M., Schubert, B.-A., Marsen, B., Wilks, R. G., Pookpanratana, S., Blum, M., Krause, S., Unold, T., Yang, W., Weinhardt, L., Heske, C., and Schock, H. -W., Appl. Phys. Lett. 99, 222105 (2011).CrossRefGoogle Scholar
Haigtht, R., Barkhouse, A., Gunawan, O., Shin, B., Copel, M., Hopstaken, M., and Mitzi, D. B., Appl. Phys. Lett. 98, 253502 (2011).Google Scholar
Terada, N., Yoshimoto, S., Chochi, K., Fukuyama, T., Mitsunaga, M., Tampo, H., Shibata, H., Matsubara, K., Niki, S., Sakai, N., Katou, T., and Sugimoto, H., Thin Solid Films 583, 166 (2015).Google Scholar