Published online by Cambridge University Press: 05 January 2017
The Eu3+ doped CaIn2O4 is a novel oxide phosphor useful for multifunctional applications such as display systems, lasers, energy-converters, photocatalysts, optical imaging, medical tools, and several others. Here, a natural aloe-vera gel is explored to obtain a precursor gel bridging Eu3+, Ca2+ and In3+ cations in a network so that it yields Eu3+:CaIn2O4 of small crystallites bonding over a grafted C-sp2 surface layer. The Eu3+ in varied from 0.1 to 2 mol% promptly promotes blue and red light-emissions in two major bands over 300-580 nm and 600-900 nm in 5DJ → 7FJ′ (J = 3, 2, 1 and J′ = 4 →1) and 5D0 → 7F1→ 4 transitions in the Eu3+ species, what is it is required in many optical and catalytic devices. The novel results are described in correlation to the light absorption and core-shell nanostructure.