Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T22:53:06.926Z Has data issue: false hasContentIssue false

Ab Initio study of the crystal structure and the elastic properties of the Mo0.85Nb0.15B3 compound under pressure.

Published online by Cambridge University Press:  13 November 2019

J. León-Flores*
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad de México, 04510.
M. Romero
Affiliation:
Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, 04510.
J. Rosas-Huerta
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad de México, 04510.
R. Escamilla
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad de México, 04510.
*
Get access

Abstract

The elastic constants, elastic modulus, anisotropy, Debye temperature, and sound velocity properties of Mo0.85Nb0.15B3 were investigated by first-principles calculations under pressure based on the generalized gradient approximation (GGA) proposed by Perdew–Burke-Ernzerhof (PBE). Employing the stress-strain method and the Voigt-Reuss-Hill approximations, were calculated the elastic properties of single and polycrystalline crystals; Bulk modulus (B), Young modulus (E), Poisson ratio (ν), Pugh ratio (G/B), Debye temperature and the Cauchy pressure terms. The calculated ν, Cauchy pressure, and Pugh ratio G/B values indicate that Mo0.85Nb0.15B3 shows a transition from brittle to ductile under pressure. Finally, the Density of States decreases as pressure increases.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mohammadi, R., Turner, C. L., Xie, M., Yeung, M. T., Lech, A. T., Tolbert, S. H. and Kaner, R. B.. Chem. Mater. 28, 632-637 (2016).CrossRefGoogle Scholar
Simonson, J.W., Wu, D., Poon, S.J. and Wolf, S.A.. J. Supercond. Nov. Magn. 23, 417-422 (2009).CrossRefGoogle Scholar
Zhang, R. F., Legut, D., Lin, Z. J., Zhao, Y. S., Mao, H. K. and Veprek, S.. PRL 108, 255502 (2012).CrossRefGoogle Scholar
Xiong, L., Fan, K., Zhu, J., Hao, J., Wu, S., Bai, L., Li, X., Liu, J., Zhang, X., Tao, Q. and Zhu, P.. High Press. Res. 37(3), 334-344 (2017).CrossRefGoogle Scholar
León-Flores, J., Romero, M., Rosas, J.L. and Escamilla, R.. Eur. Phys. J. B. 92, 26 (2019).CrossRefGoogle Scholar
Born, M. and Hang, K.. Dynamical Theory of Crystal Lattices. (Oxford University Press, U.K, 1954) pp. 140.Google Scholar
Hill, R., Proc. Phys. Soc. A. 65, 349 (1952).CrossRefGoogle Scholar
Ledbetter, H. M.. J. Phys. Chem. Ref. Data. 6, 1181 (1977).CrossRefGoogle Scholar
Romero, M. and Escamilla, R., Comput. Mater. Sci. 55, 142 (2012).CrossRefGoogle Scholar
Pugh, S.F., Philos. Mag. 45, 823 (1954).CrossRefGoogle Scholar
Anderson, O.L., J. Phys. Chem. Solids 24, 909 (1963).CrossRefGoogle Scholar
Segall, M.D., Lindan, P.J.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J., and Payne, M.C., J. Phys.: Condens. Matter 2002, 14.Google Scholar
Hohenberg, P. and Kohn, W., Phys. Rev. 1964, 136 B864-B871.CrossRefGoogle Scholar
Kohn, W., and Sham, L.J., Phys. Rev. 1965, 140 A1133-A1138.CrossRefGoogle Scholar
Perdew, P., Burke, Kieron, and Ernzerhof, Matthias. Phys. Rev. Lett. 78, 1396 (1997).CrossRefGoogle Scholar
Bellaiche, L. and Vanderbilt, D.. Phys. Rev. B 2000, 61.Google Scholar
Chen, Xing-Qiu, Niu, H., Li, D. and Li, Y.. Intermetallics 2011, 19.Google Scholar
Ali, M. A., Hossain, M. M., Hossain, M. A., Nasir, M. T., Uddin, M. M., Hasan, M. Z., Islam, A. K. M. A. and Naqib, S. H.. J. Alloys. Compd. 2018, 743.Google Scholar