Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-10T22:39:07.669Z Has data issue: false hasContentIssue false

Ab initio study of oxygen vacancy effects on electronic and optical properties of NiO

Published online by Cambridge University Press:  24 May 2016

John Petersen
Affiliation:
Department of Physics, Texas State University, San Marcos, TX 78666, U.S.A.
Fidele Twagirayezu
Affiliation:
Department of Physics, Texas State University, San Marcos, TX 78666, U.S.A.
Pablo D. Borges
Affiliation:
Instituto de Ciências Exatas e Tec., Universidade Federal de Viçosa, 38810-000 Rio Paranaíba, MG, Brazil.
Luisa Scolfaro*
Affiliation:
Department of Physics, Texas State University, San Marcos, TX 78666, U.S.A.
Wilhelmus Geerts
Affiliation:
Department of Physics, Texas State University, San Marcos, TX 78666, U.S.A.
*
Get access

Abstract

Density Functional Theory calculations of electronic and optical properties of NiO, with and without O vacancies, are the focus of this work. Two bands, one fully occupied and the other unoccupied, induced by an O vacancy, are found in the gap. These energy levels are identified and analyzed by means of a local density of states (LDOS) calculation, and notable crystal field splitting can be seen. The real and imaginary parts of the dielectric function are calculated, and an additional optical transition can be seen at lower energy, which can be attributed to the O vacancy induced state in the band gap.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Park, S., Ahn, H. S., Lee, C. K., Kim, H., Jin, H., Lee, H. S., Seo, S., Yu, J., and Han, S., Phys. Rev. B 77, 1 (2008).Google Scholar
Magyari-Kope, B., Park, S. G., Lee, H. D., and Nishi, Y., J. Mater. Sci. 47, 7498 (2012).CrossRefGoogle Scholar
Dawson, J. A., Guo, Y., and Robertson, J., Appl. Phys. Lett. 107, 122110 (2015).Google Scholar
Ghosh, A., Nelson, C. M., Abdallah, L. S., and Zollner, S., J. Vac. Sci. and Tech. A 33, 061203 (2015).Google Scholar
Cui, Yubo, Twagirayezu, Fidele, and Geerts, Wilhelmus, "Optical Properties of Permalloy Oxide Grown by reactive RF magnetron sputtering", presentation at the 2014-Fall meeting of the Texas Section of the American Physical Society, October 17-19, College Station, 2014 (unpublished).Google Scholar
Kresse, G. and Furthmüller, J., Phys. Rev. B. 54, 11169 (1996).CrossRefGoogle Scholar
Blöchl, P., Phys. Rev. B 50, 17953 (1994).CrossRefGoogle Scholar
Perdew, J., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
Dudarev, S. L., Savrasov, S. Y., Humphreys, C. J., and Sutton, a. P., Phys. Rev. B 57, 1505 (1998) .Google Scholar
Rödl, C., Fuchs, F., Furthmüller, J., and Bechstedt, F., Phys. Rev. B 79, 1 (2009).Google Scholar
Heyd, J., Scuseria, G. E., and Ernzerhof, M., J. Chem. Phys. 118, 8207 (2003).Google Scholar
Gajdoš, M., Hummer, K., Kresse, G., Furthmüller, J., and Bechstedt, F., Phys. Rev. B 73, 045112 (2006) .Google Scholar
Zhang, W. -B., Yu, N., Yu, W.-Y., and Tang, B.-Y., Eur. Phys. J. B 64, 153 (2008).CrossRefGoogle Scholar