Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-22T22:00:22.161Z Has data issue: false hasContentIssue false

Weathering of ultramafic rocks and element mobility at Mt. Prinzera, Northern Apennines, Italy

Published online by Cambridge University Press:  05 July 2018

Giampiero Venturelli
Affiliation:
Dipartimento di Seienze della Terra, Università di Parma, Viale delle Scienze 78, 43100 Parma, Italy
Simona Contini
Affiliation:
Dipartimento di Seienze della Terra, Università di Parma, Viale delle Scienze 78, 43100 Parma, Italy
Achille Bonazzi
Affiliation:
Dipartimento di Seienze della Terra, Università di Parma, Viale delle Scienze 78, 43100 Parma, Italy
Alessandro Mangia
Affiliation:
Dipartimento di Chimica Generale e Inorganiea, Università di Parma, Viale delle Scienze 78, 43100 Parma, Italy

Abstract

The weathering of the Mt. Prinzera serpentinites (Parma province, Northern Apennines, Italy) produced dominant smectite and minor Fe-hydroxides. The mobility of the elements during weathering has been estimated using the ratio Ki = MiS/MiR, where Mi indicates the mass of a generic component i before (R) and after (S) the weathering, and using TiO2 as a practically immobile component. For prevalently to tendentially mobile elements, the degree of mobility, which in our case increases as Ki decreases, is in the order Mn ≈ Cr = Fe < V ≈ Zn ≈ Co < Ni < Si < Mg < Ca. The elements Ti, Ga, Al and Zr are prevalently immobile. The mass chemically removed by the circulating waters during weathering may reach very high values (on average 52% of the original mass of serpentinite) and the main contribution to the mass loss is due to Si and Mg. The composition of the perennial and ephemeral springs in the area is in agreement with the degree of the element mobility at least for Cr, Mg and Ca.

Type
Petrology
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Present address: GEODE SCRL-Studi Geologici e Petrografiei, Viale Duea Alessandro 1, 43100 Parma, Italy.

References

Ball, J.W. and Nordstrom, D.K. (1992) User's manual for WATEQ4F, with revised thermodynamic data base and test cases for calculating speciation of major, trace, and redox elements in natural waters. U.S. Geological Survey, Open-File Report 91-183, Denver, Colorado.Google Scholar
Barnes, I. and O'Neil, J.R. (1969) The relationship between fluids in some fresh alpine-type ultramafics and possible modem serpentinization, Western United States. Geol. Soc. Amer. Bull., 80, 1947–60.CrossRefGoogle Scholar
Beccaluva, L., Emiliani, F., Venturelli, G. and Zerbi, M. (1973) Ca, Fe, Mg, Mn, Cr, Ni, Co distribution in some ultramafic rocks outcropping it the Northern Apennines with some Geological remarks. Ateneo Parmense-Acta Naturalia (Parma), 9, 69-98.Google Scholar
Berner, R.A. (1981) Kinetics of weathering and diagenesis. In Kinetics of Gechemical Processes (Lasaga, A. C. and Kirkpatrick, R. J., eds.), Reviews in Mineralogy, 8, Mineral. Soc. America, 1981, pp. 111-34.CrossRefGoogle Scholar
Chesworth, W., Dejou, J. and Larroque, P. (1981) The weathering of basalt and relative mobilities of the major elements at Belbex, France. Geochim. Cosmochim. Acta, 45, 1235-43.CrossRefGoogle Scholar
Cleaves, E.T., Fisher, D.W. and Bricker, O.P. (1974) Chemical weathering of serpentinite in the eastern Piedmont of Marylan. Geol. Soc. Amer. Bull., 85, 437-44.2.0.CO;2>CrossRefGoogle Scholar
Cortesogno, L., Mazzucotelli, A. and Vannucci, R. (1979) Some examples of pedogenesis on ultramafic rocks in Mediterranean climate (in Italian). Ofioliti, 4, 295-312.Google Scholar
Drees, L.R., Wilding, L.P., Smeck, N.E. and Senkayi, A.L. (1989) Silica in soils: quartz and disordered silica polimorphs. In Minerals in Soil Environment, 2nd exl., Soil Science Soe. Amer., Madison, pp. 913-74.Google Scholar
Enüstün, B.V. and Turchevich, J. (1960) Solubility of free particles of strontium sulfate. J. Amer. Chem. Soc., 82, 4502-9.CrossRefGoogle Scholar
Gardner, L.R. (1980) Mobilization of Al and Ti during weathering - Isovolumetric geochemical evidence. Chem. Geol., 30, 151-65.CrossRefGoogle Scholar
Gardner, L.R., Kheorueromne, I. and Chen, H.S. (1978) Isovolumetric geochemical investigation of a buried granite saprolite near Columbia, SC, U.S.A. Geochim. Cosmochim. Acta, 42, 417-24.CrossRefGoogle Scholar
Hey, M.H. (1954) A new review of the chlorites. Mineral. Mag., 30, 277-92.Google Scholar
Law, K.R., Nesbitt, H.W. and Longstaffe, F.J. (1991) Weathering of granitic tills and the genesis of a podzol. Amer. J. Sci., 291, 940-76.CrossRefGoogle Scholar
Mazzullo, J., Ehrlich, R. and Hemming, M.A. (1984) Provenance and areal distribution of late Pleistocene and Holocene quartz sand on the Southern New England continental shelf. J. Sedim. Petrol., 54, 1335-1348.Google Scholar
Minguzzi, V., Morandi, N. and Nannetti, M.C. (1985) Mineralogy and geochemistry of soils occurring on the Serra del Zanchetto ophiolite (Bologna) (in Italian). Mineral. Petrog. Acta (Bologna), 29A, 145-63.Google Scholar
Nahon, D.B. and Colin, F. (1982) Chemical weathering of orthopyroxenes under lateritic conditions. Amer. J. Sei., 282, 1232-43.Google Scholar
Nesbitt, H.W. (1979) Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature, 279, 206-10.CrossRefGoogle Scholar
Nielsen, A.E. (1964) Kinetics of Precipitation. Pergamon Press, Oxford.Google Scholar
Parks, G.A. (1984) Surface and interfacial free energies of quartz. J.. Geophys. Res., 89, 3997-4008.CrossRefGoogle Scholar
Pearce, A.J. and Cann, J.R. (1973) Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planet. Sci. Lett., 19, 290-300.CrossRefGoogle Scholar
Piecardo, G.B., Rampone, E. and Vannucci, R. (1990) Upper mantle evolution during continental rifting and ocean formation: evidences from peridofite bodies of the Western Alpine- Northern Apennines system. Mem. Soc. Gé;ol. France, 156, 323-33.Google Scholar
Pittman, E.D. (1972) Diagenesis of quartz in sandstones as revealed by scanning electron microscopy. J. Sedim. Petrol., 42, 507-19.Google Scholar
Rampone, E., Piccardo, G.B., Vannucci, R., Bottazzi, P. and Ottolini, L. (1993) Subsolidus reaction monitored by trace element partitioning: the spinel- to plagioclase-facies transition in mantle peridotites. Contrib. Mineral. Petrol., 115, 1-17.CrossRefGoogle Scholar
Shellmarm, W. (1989a) Allochthonous surface alteration of Ni-laterites. Chem. Geol., 74, 351-64.Google Scholar
Shellmann, W. (1989b) Composition and origin of lateritie nickel ore at Tagaung Taung, Burma. Mineral. Deposita, 24, 161-8.CrossRefGoogle Scholar
Stumm, W. and Morgan, J.J. (1981) Aquatic Chemistry. 2nd ed., Wiley-Intersciencs, New York.Google Scholar
Thorez, J. (1976) Practical Identification of Clay Minerals. Lelotte, Dison.Google Scholar
Wildman, W.E., Whittig, L.D. and Jackson, M.L. (1971) Serpentine stability in relation to formation of iron-rich montmorillonite in some California soils. Amer. Mineral., 56, 587-602.Google Scholar
Wilson, M.J. and Berrow, M.L. (1978) The mineralogy and heavy metal content of some serpentinite soils in North-East Scotland. Chem. Erde, 37, 181-205.Google Scholar
Yusta, A., Barahona, E., Huertas, F., Reyes, E., Yanez, J. and Linares, J. (1985) Geochemistry of soils from peridotites in Los Reales, Malaga, Spain. Miner. Petrogr. Acta (Bologna), 29A, 489-98.Google Scholar