Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-06T00:23:29.180Z Has data issue: false hasContentIssue false

Vysokýite, U4+[AsO2(OH)2]4·4H2O, a new mineral from Jáchymov, Czech Republic

Published online by Cambridge University Press:  05 July 2018

J. Plášil*
Affiliation:
Institute of Physics ASCR, v.v.i., Na Slovance 2, CZ-182 21, Prague 8, Czech Republic
J. Hloušek
Affiliation:
U Roháčových kasáren 24, CZ-100 00, Prague 10, Czech Republic
R. Škoda
Affiliation:
Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37, Brno, Czech Republic
M. Novák
Affiliation:
Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37, Brno, Czech Republic
J. Sejkora
Affiliation:
Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, CZ-193 00, Prague 9, Czech Republic
J. Čejka
Affiliation:
Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, CZ-193 00, Prague 9, Czech Republic
F. Veselovský
Affiliation:
Czech Geological Survey, Geologická 6, CZ-152 00, Prague 5, Czech Republic
J. Majzlan
Affiliation:
Institute of Geosciences, Friedrich-Schiller University, Burgweg 11, D-07749 Jena, Germany
*

Abstract

Vysokýite, U4+[(AsO2(OH)2]4(H2O)4 (IMA 2012–067), was found growing on an altered surface of massive native As in the Geschieber vein, Jáchymov ore district, Western Bohemia, Czech Republic. The new mineral was found in association with běhounekite, štěpite, kaatialaite, arsenolite, claudetite and gypsum. It forms extremely fibrous light-green crystals up to 8 mm long. Crystals have an alabaster lustre and a greenish-white to greyish streak. Vysokýite is brittle with uneven fracture and perfect cleavage along (100) and (001); the Mohs hardness is ∼2. A density of 3.393 g/cm3 was calculated using the empirical formula and unit-cell parameters obtained from a single-crystal diffraction experiment. Vysokýite is non-fluorescent under short or long wavelength UV radiation. It is colourless under the microscope, measured refractive indices are α' = 1.617(3), γ' = 1.654(3); the estimated optical orientation is α' ∼X, γ' ∼Z. The average of five spot wavelength dispersive spectroscopy (WDS) analyses is 29.44 UO2, 1.03 SiO2, 48.95 As2O5, 0.12 SO3, 15.88 H2O (calc.), total 95.42 wt.%. The empirical formula of vysokýite (based on 20 O a.p.f.u.) is U1.00[AsO2(OH)2]3.90(SiO4)0.16 (SO4)0.01·4H2O. The As–O–H and O–H vibrations dominate in the Raman spectrum. Vysokýite is triclinic, space group P, with a = 10.749(2), b = 5.044(3), c = 19.1778(7) Å, α = 89.872(15)°, β = 121.534(15)°, γ = 76.508(15)°, and V = 852.1(6) Å3, Z = 2 and Dcalc = 3.34 g·cm–3. The strongest diffraction peaks in the X-ray powder diffraction pattern are [dobs in Å (Irel.)(hkl)]: 8.872(100)(100), 8.067(50)(002), 6.399(7)(10), 4.773(6)(10), 3.411(10)(30), 3.197(18)(31). The crystal structure of vysokýite was solved from single-crystal X-ray diffraction data by the charge-flipping method and refined to R1 = 0.0595 based on 2718 unique observed reflection, and to wR2 = 0.1160 for all 4173 unique reflections. The structure of vysokýite consists of UO8 square antiprisms sharing all of their vertices with 8 As-tetrahedra to form infinite chains parallel to [010]. These chains are linked by hydrogen bonds involving terminal (OH) groups of the double-protonated As-tetrahedra and molecules of H2O located between the chains. The new mineral is named in honour of Arnošt Vysoký (1823–1872), the former chief of the Jáchymov mines and smelters, chemist and metallurgist.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Birch, W.D., Mills, S.J., Maas, R. and Hellstrom, J.C. (2011) A chronology for Late Quaternary weathering in the Murray Basin, southeastern Australia: evidence from 230Th/U dating of secondary uranium phosphates in the Lake Boga and Wycheproof granites, Victoria. Australian Journal of Earth Sciences: An International Geoscience Journal of the Geological Society of Australia, 58, 835845.CrossRefGoogle Scholar
Brese, N.E. and O’Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.CrossRefGoogle Scholar
Brown, I.D. (1981) The bond-valence method: an empirical approach to chemical structure and bonding. Pp. 130. in: Structure and Bonding in Crystals II (M. O’Keeffe and A. Navrotsky, editors). Academic Press, New York.Google Scholar
Brown, I.D. (2002) The Chemical Bond in Inorganic Chemistry. The Bond Valence Model. Oxford University Press, Oxford, UKGoogle Scholar
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallographica, B41, 244248.CrossRefGoogle Scholar
Burnham, C.W. (1962) Lattice constant refinement. Carnegie Institute Washington, Yearbook 61, 132135.Google Scholar
Finch, R.J. and Ewing, R.C. (1992) The corrosion of uraninite under oxidizing conditions. Journal of Nuclear Materials, 190, 133156.CrossRefGoogle Scholar
Finch, R. and Murakami, T. (1999) Systematics and paragenesis of uranium minerals. Pp. 91179. in: Uranium: Mineralogy, Geochemistry and the Environment (P.C. Burns and R.C. Ewing, editors). Reviews in Mineralogy, 38. Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Forsyth, R.S. and Werme, L.O. (1992) Spent fuel corrosion and dissolution. Journal of Nuclear Materials, 190, 319.CrossRefGoogle Scholar
Frondel, C. (1958) Systematic mineralogy of uranium and thorium. U. S. Geological Survey Bulletin, 1064, 400 pp.Google Scholar
Göb, S., Gühring, J.-A., Bau, M. and Markl, G. (2013) Remobilization of U and REE and the formation of secondary minerals in oxidized U deposits. American Mineralogist, 98, 530548.CrossRefGoogle Scholar
Hawthorne, F.C. (1992) The role of OH and H2O in oxide and oxysalt minerals. Zeitschrift für Kristallographie, 201, 183206.Google Scholar
Hawthorne, F.C. and Schindler, M. (2008) Understanding the weakly bonded constituents in oxysalt minerals. Zeitschrift für Kristallographie, 223, 4168.Google Scholar
Janeczek, J., Ewing, R.C., Oversby, V.M. and Werme, L.O. (1996) Uraninite and UO2 in spent nuclear fuel: a comparison. Journal of Nuclear Materials, 238, 121130.CrossRefGoogle Scholar
Keller, P. (1971) Die Kristallchemie der Phosphat- und Arsenatminerale unter besonderer Berücksichtung der Kationen-Koordinationspolyeder und des Kristallwassers Teil I. Die Anionen der Phosphatund Arsenatminerale. Neues Jahrbuch für Mineralogie Monatshefte, 1971 (Heft 11), 491510.Google Scholar
Krivovichev, S.V. and Plášil, J. (2013) Mineralogy and Crystallography of Uranium. Mineralogical Association of Canada Short Course, 43, Winnipeg MB, May 2013, p. 15119.Google Scholar
Langmuir, D. (1978) Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochimica et Cosmochimica Acta, 42, 547569.CrossRefGoogle Scholar
Libowitzky, E. (1999) Correlation of O–H stretching frequencies and O–H···O hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 10471059.CrossRefGoogle Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship: Part IV. The compatibility concept and its application. The Canadian Mineralogist, 19, 441450.Google Scholar
Mielke, Z. and Ratajczak H. (1972) The force constants and vibrational frequencies of orthoarsenates. Bulletin de l’Academie Polonaise des Sciences, Série des Sciences Chimiques, 20, 265270.Google Scholar
Mills, S.J., Birch, W.D., Kolitsch, U., Mumme, G.W. and Grey, I.E. (2008) Lakebogaite, CaNaFe2 3+H (UO2)2(PO4)4(OH)2(H2O)8, a new uranyl phosphate with a unique crystal structure from Victoria, Australia. American Mineralogist, 93, 691697.CrossRefGoogle Scholar
Myneni, S.C.B., Traina, S.J., Waychunas, G.A. and Logan T.J. (1998) Experimental and theoretical vibrational spectroscopic evaluation of arsenate coordination in aqueous solutions, solids, and at mineral-water interfaces. Geochimica Cosmochimica Acta, 62, 32853300.CrossRefGoogle Scholar
Nakamoto, K. (1986) Infrared and Raman Spectra of Inorganic and Coordination Compounds. J. Wiley and Sons, New York.Google Scholar
Ondruš, P. (1995) ZDS – software for analysis of X-ray powder diffraction patterns. Version 6.01. User’s guide.Google Scholar
Ondruš, P., Veselovský, F., Skála, R., Císařová, I., Hloušek, J., Frýda, J., Vavřín, I., Čejka, J. and Gabašová, A. (1997) New naturally occurring phases of secondary origin from Jáchymov (Joachimsthal). Journal of the Czech Geological Society, 42, 77108.Google Scholar
Ondruš, P., Veselovský, F., Gabašová, A., Hloušek, J., Šrein, V., Vavřín, I., Skála, R., Sejkora, J. and Drábek, M. (2003) Primary minerals of the Jáchymov ore district. Journal of the Czech Geological Society, 48(3-4), 19147.Google Scholar
Ondruš, P., Skála, R., Plášil, J., Sejkora, J., Veselovský, F., Čejka, J., Kallistová, A., Hloušek, J., Fejfarová, K., Škoda, R., Dušek, M., Gabašová, A., Machovič, V. and Lapčák, L. (2013) Švenekite , Ca[AsO2(OH)2]2, from Jáchymov, Czech Republic. Mineralogical Magazine, 77, 523536.CrossRefGoogle Scholar
Palatinus, L. and Chapuis, G. (2007) Superflip – a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. Journal of Applied Crystallography, 40, 451456.CrossRefGoogle Scholar
Petříček, V., Dušek, M. and Palatinus, L. (2006) JANA2006. The Crystallographic Computing System. Institute of Physics, Prague.Google Scholar
Plášil, J., Sejkora, J., Čejka, J., Novák, M., Vin˜ als, J., Ondruš, P., Veselovský, F., Škácha, P., Jelhička, J., Goliáš, V. and Hloušek, J. (2010) Metarauchite, Ni(UO2)2(AsO4)2·8H2O, from Jáchymov, Czech Republic, and Schneeberg, Germany: a new member of the autunite group. The Canadian Mineralogist, 48, 335350.CrossRefGoogle Scholar
Plášil, J., Fejfarová, K., Novák, M., Dušek, M., Škoda, R., Hloušek, J., Čejka, J., Majzlan, J., Sejkora, J., Machovič, V. and Talla, D. (2011a) Běhounekite, U(SO4)2(H2O)4, from Jáchymov (St Joachimsthal), Czech Republic: the first natural U4+ sulphate. Mineralogical Magazine, 75, 27392753.CrossRefGoogle Scholar
Plášil, J., Dušek, M., Novák, M., Čejka, J., Císařová, I. and Škod, R. (2011b) Sejkoraite-(Y), a new member of the zippeite group containing trivalent cations from Jáchymov (St. Joachimsthal), Czech Republic: description and crystal structure refinement. American Mineralogist, 96, 983991.CrossRefGoogle Scholar
Plášil, J., Hloušek, J., Veselovský , F., Fejfarová, K., Dušek, M., Škoda, R., Novák, M., Čejka, J., Sejkora, J. and Ondruš, P. (2012a) Adolfpateraite, K(UO2) (SO4)(OH)(H2O), a new uranyl sulphate mineral from Jáchymov, Czech Republic. American Mineralogist, 97, 447454.CrossRefGoogle Scholar
Plášil, J., Fejfarová, K., Wallwork, K.S., Dušek, M., Škoda, R., Sejkora, J., Čejka, J., Veselovský, F., Hloušek, J., Meisser, N. and Brugger, J. (2012b) Crystal structure of pseudojohannite, with a revised formula, Cu3(OH)2[(UO2)4O4(SO4)2](H2O)12 . American Mineralogist, 97, 17961803.CrossRefGoogle Scholar
Plášil, J., Fejfarová, K., Hloušek, J., Škoda, R., Novák, M., Sejkora, J., Čejka, J., Dušek, M., Veselovský, F., Ondruš, P., Majzlan, J. and Mrázek, Z. (2013) Štěpite, U(AsO3OH)2·4H2O, from Jáchymov, Czech Republic: the first natural arsenate of tetravalent uranium. Mineralogical Magazine, 77, 137152.CrossRefGoogle Scholar
Pouchou, J.L. and Pichoir, F. (1985) “PAP” (j rZ) procedure for improved quantitative microanalysis. Pp. 104106. in: Microbeam Analysis (J.T. Armstrong, editor). San Francisco Press, San Francisco, California, USA.Google Scholar
Raade, G., Mladeck, M.H., Kristiansen, R. and Din, V.K. (1984) Kaatialaite, a new ferric arsenate mineral from Finland. American Mineralogist, 69, 383387.Google Scholar
Sejkora, J., Plášil, J., Ondruš, P., Veselovský, F., Císařová, I. and Hloušek, J. (2010) Slavkovite, Cu13(AsO4)6(AsO3OH)4·23H2O, a new mineral from Horní Slavkov and Jáchymov, Czech Republic: description and crystal structure determination. The Canadian Mineralogist, 48, 11571170.CrossRefGoogle Scholar
Sejkora, J., Plášil, J., Veselovský, F., Císařová, I. and Hloušek, J. (2011) Ondrušite, CaCu4(AsO4)2 (AsO3OH)2·10H2O, a new mineral species from the Jáchymov ore district, Czech Republic: description and crystal-structure determination. The Canadian Mineralogist, 49, 885897.CrossRefGoogle Scholar
Smith, D.G.W. and Nickel, E.H. (2007) A system for codification for unnamed minerals: report of the Subcommittee for Unnamed Minerals of the IMA Commission on New Minerals, Nomenclature and Classification. The Canadian Mineralogist, 45, 9831055.CrossRefGoogle Scholar
Tvrdý, J. and Plášil, J. (2010) Jáchymov – Reiche Erzlagerstätte und Radonbad im böhmischen Westerzgebirge. Aufschluss, 61, 277292.Google Scholar
Vansant, F.K., Van Der Veken, B.J. and Desseyn, H.O. (1973) Vibrational analysis of arsenic acid and its anions. I. Description of the Raman spectra. Journal of the Molecular Structure, 15, 425437.CrossRefGoogle Scholar
Vysoký, A. (1860) O uranu, jeho minerálech a žluti uranové. Živa, 1, 25 (in Czech).Google Scholar
Vysoký, A. (1862) Nové minerály z Jáchymova. Živa, 2, 167 (in Czech).Google Scholar
Vysoký, A. (1866) Über die Urangelbfabrik zu Joachimsthal in Böhmen. Österreichischen Zeitschrift für Berg und Hüttenwesen, 24, 448455.Google Scholar
Wronkiewicz, D.J., Bates, J.K., Wolf, S.W. and Buck, E.C. (1996) Ten-year results from unsaturated drip tests with UO2 at 90ºC: Implications for the corrosion of spent nuclear fuel. Journal of Nuclear Materials, 238, 7895.CrossRefGoogle Scholar
Yvon, K., Jeitschko, W. and Parthé, E. (1977) Lazy Pulverix, a computer program for calculation X-ray and neutron diffraction powder patterns. Journal of Applied Crystallography, 10, 7374.CrossRefGoogle Scholar