Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T23:05:32.406Z Has data issue: false hasContentIssue false

Vitusite — an apatite derivative structure

Published online by Cambridge University Press:  05 July 2018

Adrian A. Finch
Affiliation:
Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen, AB9 2UE, U.K. Department of Geology and Geophysics, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JW, U.K.
James G. Fletcher
Affiliation:
Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen, AB9 2UE, U.K.

Abstract

The uncommon sodium rare-earth phosphate mineral vitusite-(Ce) (Na3RE(PO4)2) can be considered as the extreme product of sodium and rare-earth substitution in the apatite structure. Lesser amounts of substitution provide sodium and rare-earth-bearing apatites up to about 80 mol.% exchange; beyond this point vitusite is the stable phase. The structure of vitusite, determined previously from a synthetic analogue, can also be considered as a derivative from apatite, but with cations exchanged on sites normally occupied by anions. Vitusite can therefore be considered as a sodium- and rare-earthrich apatite end-member, with a distinct, but apatite-derived, structure, formed in highly persodic and high rare-earth environments. From an examination of the literature on diffusion in apatite, vitusite in principle could be formed from apatite sensu stricto by subsolidus diffusion in response to late-stage Naand RE-rich hydrothermal fluids.

Type
Crystal Structure
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bragg, W. L. (1937) Atomic Structure of Minerals. Cornell University Press.Google Scholar
Chao, Z. J., Parent, C., LeFlem, G., and Hagenmuller, P. (1989) L'Evolution Thermique et Structurale du Phosphate Na3Eu(PO4)2: I. Etude des Systrmes Na3POa-EuPO4 et Na3Eu(PO4)2-Na3Gd(PO4)z. J. Solid State Chem., 82, 255–63.Google Scholar
Emeleus, C. H. and Upton, B. G. J. (1976) The Gardar period in South Greenland. In: Escher, A. and Watt, W. S. (eds) The Geology of Greenland, GrCnlands Geologiske Underscgelse, Copenhagen, 152-81.Google Scholar
Farver, J. R. and Gilletti, B. J. (1989) Oxygen and strontium diffusion kinetics in apatite and potential applications to thermal history determinations. Geo-chem. Cosmochim. Acta, 53, 1621–31.CrossRefGoogle Scholar
Felsche, J. and Kaldis, E. (1972)1621-31. Thermal oxidation of EueSiO4—-a topotactic solid state reaction. J. Solid State Chem., 5, 4956.CrossRefGoogle Scholar
Finch, A. A. (1990) The chemical and isotopic nature of fluids associated with alkaline magmatism, South Greenland, Unpubl. PhD thesis, University of Edinburgh, U.K.Google Scholar
Fletcher, J. G. (1991) The use of borate fluxes in ordinary portland cement production: a feasibility study. Unpubl. PhD thesis, University of Aberdeen, U.K.Google Scholar
Kalsbeek, N., Larsen, S., and Rønsbo, J.G. (1990) Crystal structures of rare earth elements rich apatite analogues. Z. Krist., 191, 249–63.Google Scholar
Larsen, L. M. and Sr H. (1987) The Ilimaussaq intrusion—-Progressive crystallisation and formation of igneous layering in an agpaitic magma. In: Alkaline Igneous Rocks, (Fitton, J. G. and Upton, B. G. J. (eds)) Geol. Soc. London Spec. Publ. 30, 473-88.Google Scholar
Mayer, I. and Cohen, S. (1983) The crystal structure of Ca6Eu2Na2(PO4)6F2. J. Solid State Chem., 48, 1720.CrossRefGoogle Scholar
Mayer, I. and Cohen, S. Roth, R. S., and Brown. W. E. (1973) Rare earth substituted fluoride-phosphate apatites. Ibid. 11, 33-7.Google Scholar
Moore, P. B. (1981) Complex crystal structures related to glaserite, K3Na(SO4)2: evidence for very dense packings amongoxysalts. Bull. Mindral., 104, 536–47.CrossRefGoogle Scholar
Moore, P. B. (1983) Accessory phases in nepheline syenites: towards a wholistic approach. Unpubl. Abstract, 1983 Min. Soc. America Symposium—-Alkaline Complexes, Wausau, Wisconsin, 16-18 September 1983.Google Scholar
Náray-Szabó, S. (1930) The structure of apatite. Z. Krist., 75, 387.Google Scholar
Nriagu, J. O. (1984) Phosphate minerals: their properties and modes of occurrence. In: Phosphate Minerals, (Nriagu, J. O. and Moore, P. B. (eds)), Springer-Verlag, 1136.CrossRefGoogle Scholar
O'Keeffe, M. and Andersson, S. (1977) Rod packings and crystal chemistry. Acta Cryst., A33, 8494.Google Scholar
Pliego-Cuervo, Y. and Glasser, F. P. (1978) Phase relations and crystal chemistry of apatite and silico-carnotite solid solutions. Cement Concrete Res., 8, 519–24.CrossRefGoogle Scholar
Rønsbo, J. G. (1989) Coupled substitutions involving REEs and Na and Si in apatites in alkaline rocks from the Ilimaussaq intrusion, South Greenland, and the petrological implications. Am. Mineral., 74, 896901.Google Scholar
Rønsbo, J. G. Khomyakov, A. P., Voronkov, A. A., and Garanin, V. K. (1979) Vitusite—-a new phosphate of sodium and rare earths from the Lovozero alkaline Massif, Kola, and the Ilímaussaq alkaline intrusion, South Greenland. Neues Jahrb. Mineral. Abh., 137, 4253.Google Scholar
Salmon, R., Parent, C., Vlasse, M., and Le Flem, G. (1978) The crystal structure of a new high -Nd-concentration laser material: Na3Nd(PO4)2. Materials Res. Bull., 13, 439–44.CrossRefGoogle Scholar
Sudarsanan, K. and Young, R. A. (1969) Significant precision in crystal structure details: Holly Springs hydroxyapatite. Acta Cryst., B25, 1534-43.CrossRefGoogle Scholar
Tacker, R. C. and Stormer, J. C. jr (1989) A thermodynamic model for apatite solid solutions, applicable to high-temperature geologic problems. Am. Mineral., 74, 877–88.Google Scholar
Upton, B. G. J. and Emeleus, C. H. (1978) Mid-Proterozoic alkaline magmatism in southern Greenland: the Gardar province. In: Alkaline Igneous Rocks, (Fitton, J. G. and Upton, B. G. J. (eds)), Geol. Soc. London Spec. Publ. 30, 449-71.Google Scholar