Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-05T13:40:54.755Z Has data issue: false hasContentIssue false

The vibrational spectra of BaMg(CO3)2 (norsethite)

Published online by Cambridge University Press:  05 July 2018

Michael E. Böttcher
Affiliation:
Institute of Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University P.O. Box 2503, D-26111 Oldenburg, Germany
Peer-Lennart Gehlken
Affiliation:
Testing of Raw and Residual Mineral Materials, Marktplatz 6-7, D-37308 Heiligenstadt, Germany
Henrik Skogby
Affiliation:
Department of Mineralogy, Swedish Museum of Natural History, Box 50007, S-10405 Stockholm, Sweden
Christian Reutel
Affiliation:
Institute of Geology and Dynamics of the Lithosphere (IGDL), Georg-August-University, Goldschmidtstr.3, D-37077 Göttingen, Germany

Abstract

The FTIR spectra of synthetic BaMg(CO3)2 (norsethite) are measured at ambient temperature and atmospheric pressure, and the influence of formation conditions on the FTIR spectra is investigated. The results are compared with those for natural norsethite from Långban (Sweden) and Rosh Pinah (Namibia). The Raman spectrum of synthetic norsethite is reported, too. A number of first-order internal modes of the carbonate ion group (ν1, ν2, ν3, ν4) are found to be infrared and Raman active. Additonally, the (ν1+ν3) and (ν1+ν4) combination modes and the (2*ν2) overtone are observed in the FTIR and Raman spectrum, respectively. The carbon isotopic-shift coefficient for ν2 due to the substitution of 12C by 13C (ν2(13CO32-)/ν2(12CO32-) = 0.971 ± 0.002), observed by FTIR spectroscopy, agrees with the theoretical value of 0.969.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Present address: GeoLink, Düstere-Eichenweg 1, D-37073 Göttingen, Germany

References

Åberg, G. and Charalampides, G. (3. (1988) Evolution of the mineral deposits from Långban, Sweden, as recorded from strontium isotope data. Geol. Fören. Stockholm Förhand., 110, 329-34.CrossRefGoogle Scholar
Bischoff, W.D., Sharma, S.K. and Mackenzie, F.T. (1985) Carbonate disorder in synthetic and biogenic magnesian calcites: a Raman spectral study. Amer. Mineral., 70, 581-9.Google Scholar
Böttcher, M.E. (1994) 13C/12C- and lSO/16O-fractiona-tion during synthesis of BaMg(CO3)2 and PbMg(CO3)2. IMA 16th Gen. Meet., Pisa, 4.-9.9.1994, Abstracts, 53.Google Scholar
Böttcher, M.E. and Gehlken, P.-L. (1995) Characterization of biogenic and inorganic magne-sian calcites by FTIR spectroscopy. Terra Abstracts, 7/1, 69.Google Scholar
Böttcher, M.E. and Gehlken, P.-L. (1996) Characterization of biogenic and inorganic magnesian calcites by Fourier Transform infrared spectroscopy. Manuscript, in prep.CrossRefGoogle Scholar
Böttcher, M.E., Gehlken, P.-L. and Usdowski, E. (1992) Infrared spectroscopic investigations of the calcite-rhodochrosite and parts of the calcite-magnesite mineral series. Contrib. Mineral. Petrol., 109, 304-6.CrossRefGoogle Scholar
BöUcher, M.E., Gehlken, P.-L. and Reutel, C. (1996) The vibrational spectra of PbMg(CO3)2. Neues Jahrb. Mineral. Mh., 241–50.Google Scholar
Böttcher, M.E., Gehlken, P.-L., Á., Fernández-Gonzáilez and Prieto, M. (1997) Characterization of synthetic witherite-strontianite (BaCO3-SrCO3) solid-solutions by Fourier transform infrared spectroscopy. Eur. J. Mineral. (in press).CrossRefGoogle Scholar
Busenberg, E. and Plummer, L.N. (1986) The solubility of BaCO3(cr) (witherite) in CO2-H20 solutions between 0 and 90° evaluation of the association constants of BaHCO3 +(aq) and BaCO between 5 and 80° and a preliminary evaluation of the thermodynamic properties of Ba2+(aq). Geochim. Cosmochim. Acta, 50, 2225-33.CrossRefGoogle Scholar
Chang, L.L.Y. (1964) Synthesis of MBa(CO3)2 compounds. Amer. Mineral., 49, 1142—3.Google Scholar
Craig, H. (1957) Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analysis of carbondioxide. Geochim. Cosmochim. Acta, 12, 133-49.CrossRefGoogle Scholar
Effenberger, H. and Zemann, J. (1985) Single crystal investigation of norsethite: one more mineral with an aplanar carbonate group. Z. Krist., 171, 275—80.Google Scholar
Finlow-Bates, T. (1987) The possible significance of uncommon barium-rich mineral assemblages in sediment-hosted lead-zinc deposits. Geol. Mijnbouw, 66, 65—6.Google Scholar
Golyshev, S.I., Padalko, N.L. and Pechenkin, S.A. (1981) Fractionation of stable oxygen and carbon isotopes in carbonate systems. Geoch. Int., 10, 85-99.Google Scholar
Hexter, R.M. (1958) High-resolution, temperature-dependent spectra of calcite. Spectrochim. Acta, 10, 281-9..CrossRefGoogle Scholar
Hood, W.C. and Steidl, P.F. (1973) Synthesis of benstonite at room temperature. Amer. Mineral., 58, 341-2.Google Scholar
Hood, W.C., Steidl, P.F. and Tschopp, D.G. (1974) Precipitation of norsethite at room temperature. Amer. Mineral., 59, 471-4.Google Scholar
Kharaka, Y.K., Gunter, W.D., Aggarwal, P.K., Perkins, B.H. and DeBraal, J.D. (1988) SOLMINEQ.88: A computer program for geochemical modeling of water-rock interactions. U.S. Geol. Surv. Wat.-Res. Inv. Rep., 88-4227.Google Scholar
La Iglesia, A. and Félix, J.F. (1994) Estimation of thermodynamic properties of carbonates at high and low temperatures from the sum of the polyhedral contributions. Geochim. Cosmochim. Acta, 58, 3983-91.CrossRefGoogle Scholar
Lippmann, F. (1967) Die Synthese des Norsethit, bei ca. 20° und 1 at. Ein Modell zur Dolomitisierung. Neues Jahrb. Mineral. Mh., 23—9.Google Scholar
Lippmann, F. (1968) Die Kristallstruktur des Norsethit, BaMg(CO3)2. Mit einem Strukturvorschlag fur PbMg(CO3)2 . Tschermaks Mineral. Mitt., 12, 299318.CrossRefGoogle Scholar
Lippmann, F. (1973) Sedimentary Carbonate Minerals. Springer, New York.CrossRefGoogle Scholar
Lippmann, F. (1980) Phase diagrams depicting aqueous solubility of binary mineral systems. Neues Jahrb. Mineral. Abh., 139, 125.Google Scholar
Longo, J.M. and Voight, K.C. (1989) Synthesis of mixed metal carbonates by grinding. Solid State Ionics, 32/33, 409-12.CrossRefGoogle Scholar
McCrea, J.M. (1950) On the isotopic chemistry of carbonates and a paleotemperature scale. J. Chem., Phys., 18, 849-57.CrossRefGoogle Scholar
McMillan, P.F. and Hofmeister, A.M. (1988) Infrared and Raman spectroscopy. In (Hawthorne, F.C., ed.) Spectroscopic methods in mineralogy and geology. Rev. Mineral., 18, 99159.Google Scholar
Morrow, D.W. and Ricketts, B.D. (1986) Chemical controls on the precipitation of mineral analogues of dolomite: The sulfate enigma. Geology, 14, 408—10.2.0.CO;2>CrossRefGoogle Scholar
Mrose, M.E., Chao, E.C.T., Fahey, J.J. and Milton, C. (1961) Norsethite, BaMg(COa)2, a new mineral from the Green River formation. Amer. Mineral., 46, 420-9.Google Scholar
Platt, R.G. and Woolley, A.R. (1990) The carbonatites and fenites of Chipman lake, Ontario. Can. Mineral., 28, 241-50.Google Scholar
Reutel, C. (1991) Krustenfluide in Gesteinen und Lagerstätten am Westrand der Böhmischen Masse. Gött. Arb. Geol. Paläiontol., 53, 1-76.Google Scholar
Santrock, J., Studley, S.A. and Hayes, J.M. (1985) Isotopic analysis based on the mass spectrum of carbon dioxide. Anal. Chem., 57, 1444—8.CrossRefGoogle ScholarPubMed
Scheetz, B.E. and White, W.B. (1977) Vibrational spectra of the alkaline earth carbonates. Amer. Mineral., 62, 36-50.Google Scholar
Sterzel, W. and Chorinsky, E. (1968) Die Wirkung schwerer Kohlenstoffisotope auf das Infrarotspektrum von Carbonaten. Spectrochim. Acta, 24A, 353-60.CrossRefGoogle Scholar
Sterzel, W. and Schnee, W.D. (1970) Zuordnung einer Kombinationsbande in den IR-Spektren von Karbonaten mit Hilfe der Isotopenmarkierungen.. anorg, allg. Chem., 376, 134-43.CrossRefGoogle Scholar
Steyn, J.G.D. and Watson, M.D. (1967) Notes on a new occurrence of norsethite, BaMg(CO3)2 . Amer. Mineral., 52, 1770-5,Google Scholar
Sundius, N. and Blix, R. (1965) Norsethite from Långban. Arkiv. Mineral. Geol., 4, 277—8.Google Scholar
Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R.H., Harlow, I., Bailey, S.M., Churney, K.L. and Nuttall, R.L. (1982) The NBS tables of chemical thermodynamic properties. Selected values for inorganic and C1 and C2 organic substances in SI units. J. Phys. Chem. Ref Data, 11, Suppl. 2.Google Scholar
White, W.B. (1974) The carbonate minerals. In (Farmer, V.C., ed.) Infrared spectra of minerals. Min. Soc. Monogr., 4, 227-84.Google Scholar
Wiwchar, B.W., Perkins, B.H. and Gunter, W.D. (1988) Solmineq.88 PC/Shell, user manual (Alberta Res. Counc., ed.).Google Scholar