Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-17T20:01:59.376Z Has data issue: false hasContentIssue false

Uranium and uranyl luminescence in agate/chalcedony

Published online by Cambridge University Press:  02 January 2018

Jens Götze*
Affiliation:
TU Bergakademie Freiberg, Institute of Mineralogy, Brennhausgasse 14, 09596 Freiberg, Germany
Michael Gaft
Affiliation:
The Open University of Israel, Department of Natural Sciences, 16 Klausner St., 61392 Tel Aviv, Israel
Robert Möckel
Affiliation:
Helmholtz-Zentrum Dresden - Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Halsbrücker Str. 34, 09599 Freiberg, Germany
*

Abstract

A systematic investigation of agates from different occurrences in Europe, Northern and Southern America reveals that macrocrystalline quartz and chalcedony within them have an unusually high uranium content. Whereas agates may contain >70 ppm of U, quartz from magmatic and metamorphic rocks as well as pegmatite quartz commonly exhibit U concentrations at sub-ppm levels. Spatially resolved trace-element analyses by laser ablation inductively coupled plasma mass spectrometry show that the distribution of U within the agate samples is heterogeneous and coincides with the structural banding. The results indicate that U is incorporated into agate as uranyl ions. These ions, which are bound to the silica surface, are interpreted to originate from the parallel accumulation of Si and U by alteration processes of surrounding host rocks during agate formation.

The uranyl ion is the cause of greenish photoluminescence (PL) in agate, which can only be excited by short wavelengths (<300 nm). The green PL is due to the electron transition from an excited to a ground state of the uranyl ion and is shown by a typical emission line at ∼500 nm accompanied by several equidistant lines. These are due to the harmonic vibration of oxygen atoms along the uranyl axis. Luminescence can be detected in samples with a U content down to the 1 ppm level.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: TU Bergakademie Freiberg, Institute of Mineralogy, Brennhausgasse 14, D-09596 Freiberg, Germany

References

Blankenburg, H.-J., Gotze, J. and Schulz, H. (1994) Quarzrohstoffe. Deutscher Verlag fur Grundstoffindustrie, Leipzig-Stuttgart, Germany, 296 pp.Google Scholar
Clarke, F.W. and Washington, H.S. (1924) The Composition of the Earth's Crust. Geological, U.S. Survey, Professional Paper, 127. Geological Survey, Reston, Virginia, USA, 117 pp.CrossRefGoogle Scholar
DeNeufville, IP., , Kasdan, A. and Chimenti, RJ. (1981) Selective detection of uranium by laser-induced fluorescence: a potential remote-sensing technique: 1. Optical characteristics of uranyl geologic targets. Applied Optics, 20, 12791296.CrossRefGoogle Scholar
Gaillou, E., Delaunay, A., Rondeau, B., Bouhnik-le-Coz, M., Fritsch, E., Cornen, G. and Monnier, C. (2008) The geochemistry of gem opals as evidence of their origin. Ore Geology Reviews, 34, 113126.CrossRefGoogle Scholar
Gerler, J. (1990) Geochemische Untersuchungen an hydrothermalen, metamorphen, granitischen und p egmatitis chert Quarz en und deren Flussigkeitseinschlussen. PhD thesis. University of Gottingen, Germany.Google Scholar
Glinka, Yu.D. and Krak, T.B. (1995) Luminescence spectra of uranyl ions adsorbed on disperse SiO2surfaces. Physical Review B, 52, 1498514994.CrossRefGoogle Scholar
Gorobets, B.S. and Rogojine, A.A. (2002) Luminescent Spectra of Minerals. RPC VIMS, Moscow, 300 pp.Google Scholar
Gotze, J. (2009) Chemistry, textures and physical properties of quartz—geological interpretation and technical application. Mineralogical Magazine, 73, 645671.CrossRefGoogle Scholar
Gotze, J. (2011) Agate—fascination between legend and science. Pp. 19133 in: Agates III (J. Zenz, editor). Bode-Verlag, Salzhemmendorf, Germany.Google Scholar
Gotze, J., Plotze, M., Fuchs, H. and Habermann, D. (1999) Defect structure and luminescence behaviour of agate—results of electron paramagnetic resonance (EPR) and cathodoluminescence (CL) studies. Mineralogical Magazine, 63, 149163.CrossRefGoogle Scholar
Gotze, J., Tichomirowa, M., Fuchs, H., Pilot, J. and Sharp, Z. (2001) Geochemistry of agates: a trace element and stable isotope study. Chemical Geology, 175, 523541.CrossRefGoogle Scholar
Gotze, J., Plotze, M., Graupner, T., Hallbauer, D.K. and Bray, C. (2004) Trace element incorporation into quartz: a combined study by ICP-MS, electron spin resonance, cathodoluminescence, capillary ion analysis and gas chromatography. Geochimica et Cosmochimica Ada, 68, 37413759.CrossRefGoogle Scholar
Gotze, J., Mockel, R., Kempe, U., Kapitonov, I. and Vennemann, T. (2009) Origin and characteristics of agates in sedimentary rocks from the Dryhead area, Montana/USA. Mineralogical Magazine, 73, 673690.CrossRefGoogle Scholar
Gotze, J., Schron, W., Mockel, R. and Heide, K. (2012a) The role of fluids in the formation of agate. Geochemistry, 72, 283286.CrossRefGoogle Scholar
Gotze, J., Nasdala, L., Kempe, U., Libowitzky, E., Rericha, A. and Vennemann, T. (2012) Origin of black colouration in onyx agate from Mali. Mineralogical Magazine, 76, 115127.CrossRefGoogle Scholar
Harder, H. (1993) Agates-formation as a multi component colloid chemical precipitation at low temperatures. Neues Jahrbuch Mineralogie Monatshefte, HI, 31-48.Google Scholar
Hollocher, and Ruiz, (1995) Major and trace element determinations on NIST glass standard reference materials 611, 612, 614 and 1834 by inductively coupled plasma-mass spectrometry. Geostandards Newsletter, 19(1), 27-34.CrossRefGoogle Scholar
Holzhey, G. (1995) Herkunft und Akkumulation des SiO2 in Rhyolithkugeln aus Rotliegendvulkaniten des Thiiringer Waldes. Geowissenschaftliche Mitteilungen von Thuringen, 3, 3159.Google Scholar
Kobyshev, G.I. (1961) Luminescence of surface-active crystals adsorbing uranyl ions (in Russian). Izvestiya Akademii Nauk SSSR, Seria physika, 25(4), 542-545.Google Scholar
Krickl, R., Nasdala, L., Gotze, J. and Grambole, D. (2008) Alteration of SiO2 caused by natural and artificial alpha-irradiation. European Journal of Mineralogy, 20, 517522.CrossRefGoogle Scholar
Landmesser, M. (1984) Das Problem der Achatgenese. Mitteilungen Pollichia, 72(5), 5-137.Google Scholar
Lehmann, G. and Bambauer, H.U. (1973) Quarzkristalle und ihre Farben. Angewandte Chemie, 85, 281289.CrossRefGoogle Scholar
Lopez, M. and Birch, DJ.S. (1996) Uranyl photophysics on colloidal silica: an alternative luminescence-enhancing medium for uranyl assay. Analyst, 121, 905908.CrossRefGoogle Scholar
Lyons, W.H., Glascock, M.D. and Mehringer Jr., PJ. (2003) Silica from sources to site: ultraviolet fluorescence and trace elements identify cherts from Lost Dune, southeastern Oregon, USA. Journal of Archaeological Science, 30, 11391159.CrossRefGoogle Scholar
Marfunin, A.S. (1979) Spectroscopy, Luminescence and Radiation Centres in Minerals. Springer, Berlin, 352 pp.CrossRefGoogle Scholar
Matteson, S., Avara, M.J., Nguyen, C.V. and Kim, S.H. (2005) RBS characterization of uranium in flint and chert. Nuclear Instruments and Methods in Physics Research, B 241, 465469.CrossRefGoogle Scholar
Matysova, P., Gotze, J., Leichmann, J., Skoda, R., Strnad, L. and Drahota, P. (2013) CL as a tool for identification of diagenetic changes in Permian silicified wood—evidence of U and V mobility. Conference on Raman and Luminescence Spectroscopy in the Earth Sciences (CORALS-2013), Book of abstracts, 77-78.Google Scholar
Mockel, R. and Gotze, J. (2007) Achate aus sachsischen Vulkaniten des Erzgebirgischen Beckens. Veroffentlichung Museum Naturkunde Chemnitz, 30, 2560.Google Scholar
Mockel, R., Gotze, J., Sergeev, S.A., Kapitonov, I.N., Adamskaya, E.V., Goltsin, N.A. and Vennemann, T. (2009) Trace-element analysis by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS): a case study for agates from Nowy Kosciol, Poland. Journal of Siberian Ferderal University, Engineering & Technologies, 2,123-138.Google Scholar
Monecke, T., Bombach, G., Klemm, W., Kempe, U., Gotze, J. and Wolf, D. (2000) Determination of trace elements in quartz standard UNS-SpS and in natural quartz by ICP-MS. Geostandards Newsletter, 24, 7381.CrossRefGoogle Scholar
Moxon, T. (1996) Agate: Microstructure and Possible Origin. Terra Publications, Doncaster, UK, 106 pp.Google Scholar
Moxon, T. (2009) Studies on Agate—Microscopy, Spectroscopy, Growth, High Temperature and Possible Origin. Terra Publications, Doncaster, UK, 102 pp.Google Scholar
Owen, M.R. (1988) Radiation-damage halos in quartz. Geology, 16, 529532.2.3.CO;2>CrossRefGoogle Scholar
Pabian, R.K. and Zarins, A. (1994) Banded agates—Origins and inclusions. Educational Circular No. 12, University of Nebraska, Lincoln, USA, 32 pp.Google Scholar
Porter, R.A. and Weber, WJ. Jr. (1971) The interaction of silicic acid with iron(III) and uranyl ions in dilute aqueous solution. Journal of Inorganic and Nuclear Chemistry, 33, 24432449.CrossRefGoogle Scholar
Schron, W., Oppermann, H., Rosier, HJ. and Brand, P. (1988) Fest-Gas-Reaktionen als Ursache geo-und kosmogeochemischer Mobilisierungs-und Anreicherungsprozesse. Chemie der Erde, 48, 3554.Google Scholar
Walger, E. (1954) Das Vorkommen von Uruguay-Achaten bei Flonheim in Rheinhessen, seine tektonische Auswertung und seine Bedeutung fur die Frage nach der Achatbildung. Jahresbericht Mitteilungen Oberrheinische Geologische Google Scholar
Zielinski, R.A. (1979) Uranium mobility during interaction of rhyolitic obsidian, perlite and felsite with alkaline carbonate solution: T = 120°C, P = 210 kg/cm2 . Chemical Geology, 27, 4763.CrossRefGoogle Scholar
Zielinski, R.A. (1982) Uraniferous opal, Virgin Valley, Nevada: Conditions of formation and implications for uranium exploration. Journal of Geochemical Exploration, 16, 197216.CrossRefGoogle Scholar