Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T18:44:18.220Z Has data issue: false hasContentIssue false

Twinning and incommensurate modulation in baumoite, Ba0.5[(UO2)3O8Mo2(OH)3](H2O)~3, the first natural Ba uranyl molybdate

Published online by Cambridge University Press:  12 April 2019

Peter Elliott*
Affiliation:
Department of Earth Sciences, School of Physical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
Jakub Plášil
Affiliation:
Institute of Physics ASCR, v.v.i., Na Slovance 1999/2, 18221 Prague 8, Czech Republic
Václav Petříček
Affiliation:
Institute of Physics, Academy of Sciences of the Czech Republic, v.v.i., Na Slovance 2, 180 40 Praha 8, Czech Republic
Jiří Čejka
Affiliation:
Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, 193 00 Praha 9, Czech Republic
Luca Bindi
Affiliation:
Dipartimento di Scienze della Terra, Università di Firenze, Via La Pira 4, I-50121 Firenze, Italy CNR–Istituto di Geoscienze e Georisorse, sezione di Firenze, Via La Pira 4, I-50121 Firenze, Italy
*
*Author for correspondence: Peter Elliott, Email: [email protected]

Abstract

Baumoite, Ba0.5[(UO2)3O8Mo2(OH)3](H2O)~3, is a new mineral found near Radium Hill, South Australia, where it occurs in a granite matrix associated with baryte, metatorbernite, phurcalite and kaolinite. Baumoite forms thin crusts of yellow to orange–yellow tabular to prismatic crystals. The mineral is translucent with a vitreous lustre and pale yellow streak. Crystals are brittle, the fracture is uneven and show one excellent cleavage. The Mohs hardness is ~2½. The calculated density is 4.61 g/cm3. Optically, baumoite crystals are biaxial (–), with α = 1.716(4), β = 1.761(4), γ = 1.767(4) (white light); and 2Vcalc = 42.2°. Electron microprobe analyses gave the empirical formula Ba0.87Ca0.03Al0.04U2.97Mo2.02P0.03O22H11.99, based on 22 O atoms per formula unit. The eight strongest lines in the powder X-ray diffraction pattern are [dobs Å (I) (hkl)]: 9.175(39)(12${\bar 1}$), 7.450(100)(020), 3.554(20)(221), 3.365(31)(004, 202), 3.255(31)(123, 30${\bar 2}$), 3.209(28)(12${\bar 4}$), 3.067(33)(30${\bar 3}$, 222, 32${\bar 2}$) and 2.977(20)(142). Single-crystal X-ray studies (R1 = 5.85% for 1892 main reflections) indicate that baumoite is monoclinic, superspace group X2/m(a0g)0s with X = (0,½,0,½), with unit-cell parameters: a = 9.8337(3), b = 15.0436(5), c = 14.2055(6) Å, β = 108.978(3)°, V = 1987.25(13) Å3 and Z = 4. The crystal structure is twinned and incommensurately modulated and is based upon sheets of U6+ and Mo6+ polyhedra of unique topology. Four independent cationic sites partially occupied by Ba atoms are located between the sheets, together with H2O molecules.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Ian T. Graham

References

Barik, S.K., Chatterjee, S. and Choudhary, R.P.N. (2014) Molecular and impedance spectrosocpy of Na2Mo2O7 ceramics. Praman – Journal of Physics, 83, 571577.Google Scholar
Bartlett, J.R. and Cooney, R.P. (1989) On the determination of uranium-oxygen bond lengths in dioxouranium(VI) compounds by Raman spectroscopy. Journal of Molecular Structure, 193, 295300.Google Scholar
Callen, R.A. (1990) Curnamona, South Australia, sheet SH/54-14. South Australia Geological Survey 1:250 000 Series Explanatory Notes.Google Scholar
Campana, B. and King, D. (1958) Regional Geology and Mineral Resources of the Olary Province. Geological Survey of South Australia, Bulletin, 34, 133 p.Google Scholar
Čejka, J. (1999) Infrared spectroscopy and thermal analysis of the uranyl minerals. Pp. 521–622 in: Uranium: Mineralogy, Geochemistry and the Environment (Burns, P.C. and Finch, R., editors). Reviews in Mineralogy, 38. Mineralogical Society of America, Chantilly, Virginia, USA.Google Scholar
Dickinson, S.B., Sprigg, R.C., King, D., Wade, M.L., Webb, B.P. and Whittle, A.W.G. (1954) Uranium Deposits in South Australia. Geological Survey of South Australia Bulletin, 30, 151 p.Google Scholar
Elliott, P., Plášil, J., Petríček, V., Čejka, J. and Bindi, L. (2017) Baumoite, IMA 2017-054. CNMNC Newsletter No. 39, October 2017, page 1282; Mineralogical Magazine, 81, 1279–1286.Google Scholar
Fedoseev, A.M., Budantseva, N.A., Shirokova, I.B., Andreev, G.B., Yurik, T.K. and Krupa, J.C. (2001) Synthesis and physicochemical properties of uranyl molybdate complexes of ammonium, potassium, rubidium, and cesium ions. Russian Journal of Inorganic Chemistry, 46, 4043.Google Scholar
Flint, D.J. and Parker, A.J. (1993) Willyama Inliers. Pp. 8293 in: The Geology of South Australia, vol. I, The Precambrian. (Drexel, J.F., Preiss, W.V. and Parker, A.J., editors). South Australia Geological Survey, Bulletin, 54.Google Scholar
Fomichev, V.V., Poloznikova, M.E. and Kondratova, O.I. (1992) Structure features, spectroscopic and energy characteristics of alkali metal molybdates and tungstates. Uspekhi Khimii, 61, 16011622.Google Scholar
Forbes, B.G. (1991) Olary, South Australia, sheet SI 54-2. South Australia Geological Survey I: 250 000 Series Explanatory Notes.Google Scholar
Frost, R.L., Čejka, J. and Dickfos, M.J. (2008) Raman and infrared spectroscopic study of the molybdate-containing uranyl mineral calcurmolite. Journal of Raman Spectroscopy, 39, 779785.Google Scholar
Hardcastle, F.D. and Wachs, I. (1990) Determination of molybden-oxygen bond distance and bond orders by Raman spectroscopy. Journal of Raman Spectroscopy, 21, 683691.Google Scholar
Hunter, B.A. (1998) Rietica – A Visual Rietveld Program. Commission on Powder Diffraction Newsletter, 20, 21.Google Scholar
Jaszczak, J.A., Rumsey, M.S., Bindi, L., Hackney, S.A., Wise, M.A., Stanley, C.J. and Spratt, J. (2016) Merelaniite, Mo4Pb4VSbS15, a new molybdenum-essential member of the cylindrite group, from the Merelani tanzanite deposit, Lelatema Mountains, Manyara Region, Tanzania. Minerals, 6, 115.Google Scholar
Katscher, H., Jehn, H. and Kurtz, W. (editors) (1990) Gmelin Handbook of Inorganic Chemistry, 8th Edition, Mo Supplement Vol. B5, p. 218–220. Springer, Berlin-Heidelberg.Google Scholar
Krivovichev, S.V. (2014) K2Na8(UO2)8Mo4O24[(S,Mo)O4], the first uranium molybdosulfate: synthesis, crystal structure, and comparison to related compounds. Journal of Geosciences, 59, 115121.Google Scholar
Krivovichev, S.V. and Burns, P.C. (2003) Crystal chemistry of uranyl molybdates. X. The crystal structure of Ag10[(UO2)8O8(Mo5O20)]. The Canadian Mineralogist, 41, 14551462.Google Scholar
Le Bail, A., Duroy, H. and Fourquet, J.L. (1988) Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction. Materials Research Bulletin, 23, 447452.Google Scholar
Libowitzky, E. (1999) Correlation of O–H stretching frequencies and O–H···O hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 10471059.Google Scholar
Lussier, A.J., Lopez, R.A.K. and Burns, P.S. (2016) A revised and expanded structure hierarchy of natural and synthetic hexavalent uranium compounds. The Canadian Mineralogist, 54, 177283.Google Scholar
Mączka, M., Pietraszko, A., Paraguassu, W., Souza Filho, A.G., Freire, P.T.C., Mendes Filho, J. and Hanuza, J. (2009) Strucural and vibrational properties of K3Fe(MoO4)(Mo2O7) – a novel layered molybdate. Journal of Physics: Condensed Matter, 21, 18.Google Scholar
Makovicky, E., Petříček, V., Dušek, M. and Topa, D. (2011) The crystal structure of franckeite, Pb21.7Sn9.3Fe4.0Sb8.1S56.9. American Mineralogist, 96, 16861702.Google Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship: Part IV: The compatibility concept and its application. The Canadian Mineralogist, 19, 441450.Google Scholar
Nakamoto, K. (2009) Infrared and Raman Spectra of Inorganic and Coordination Compounds Part A. Theory and Applications in Inorganic Chemistry. Wiley and Sons, Hoboken, USA.Google Scholar
Olds, T.A., Lussier, A.J., Oliver, A.G., Petříček, V., Plášil, J., Kampf, A.R., Burns, P.C., Dembowski, M., Carlson, S.M. and Steele, I.M. (2017) Shinkolobweite, IMA 2016-095. CNMNC Newsletter No. 36, April 2017, page 404; Mineralogical Magazine, 81, 403–409.Google Scholar
Palatinus, L. and Chapuis, G. (2007) Superflip – a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. Journal of Applied Crystallography, 40, 451456.Google Scholar
Petříček, V., Malý, K., Coppens, P., Bu, X., Císařová, I and Frost-Jensen, A. (1991) The description and analysis of composite crystals. Acta Crystallographica, A47, 210216.Google Scholar
Petříček, V., Dušek, M. and Palatinus, L. (2014) Crystallographic computing system JANA2006: general features. Zeitschrift für Kristallographie, 229, 345352.Google Scholar
Petříček, V., Eigner, V., Dušek, M. and Čejchan, A. (2016) Discontinuous modulation functions and their application for analysis of modulated structures with the computing system JANA2006. Zeitschrift für Kristallographie, 231, 301312.Google Scholar
Plášil, J. (2018) The super-space approach to the structures of selected U6+ minerals and compounds. Aperiodic 2018 (9th Conference on Aperiodic Crystals), Abstract 56.Google Scholar
Plášil, J, Petříček, V., Locock, A.J., Škoda, R. and Burns, P.C. (2017) The (3 + 3) commensurately modulated structure of the uranyl silicate mineral swamboite-(Nd), Nd0.333[(UO2)(SiO3OH)](H2O)2.41. Zeitschrift für Kristallographie, 233, 223232.Google Scholar
Pouchou, J.L. and Pichoir, F. (1985) “PAP” φ(ρZ) procedure for improved quantitative microanalysis. Pp. 104106 in: Microbeam Analysis (Armstrong, J.T., editor). San Francisco Press, California.Google Scholar
Rigaku (2018) CrysAlis CCD and CrysAlis RED. Rigaku-Oxford Diffraction Ltd, Yarnton, Oxfordshire, UK.Google Scholar
Sidorenko, G.A., Chistyakova, N.T., Chukanov, N.V., Naumova, I.S. and Rossulov, V.A. (2005) Carcurmolite: New data on chemical composition and constitution the mineral. New Data on Minerals, 40, 2936.Google Scholar
Stevens, B.P.I, Barnes, R.G. and Forbes, B.G., (1990) Willyama Block – regional geology and minor mineralisation. Pp. 10651072 in: Geology of the Mineral Deposits of Australia and Papua New Guinea (Hughes, F.E., editor). Australasian Institute of Mining and Metallurgy, Monograph Series, 14.Google Scholar
Zhang, J. and Guo, Y. (2012) Preparation and characterization of large-sized ADM monocrystals. Applied Mechanics and Materials, 152–154, 126129.Google Scholar
Supplementary material: File

Elliott et al. supplementary material

Elliott et al. supplementary material 1

Download Elliott et al. supplementary material(File)
File 263.6 KB