Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-24T16:35:46.391Z Has data issue: false hasContentIssue false

Tripuhyite, FeSbO4, revisited

Published online by Cambridge University Press:  05 July 2018

P. Berlepsch*
Affiliation:
Laboratorium für chemische und mineralogische Kristallographie, Universitat Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
T. Armbruster
Affiliation:
Laboratorium für chemische und mineralogische Kristallographie, Universitat Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
J. Brugger
Affiliation:
The South Australian Museum & Department of Geology and Geophysics, The University of Adelaide, North Terrace, 5000 Adelaide, South Australia
A. J. Criddle
Affiliation:
Department of Mineralogy, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
S. Graeser
Affiliation:
Mineralogisch-Petrographisches Institut, Universitat Basel, Bernoullistrasse 30, CH-4056 Basel, Switzerland
*

Abstract

The exact nature of tripuhyite remains controversial more than 100 years after the first description of the mineral. Different stoichiometries and crystal structures (rutile or tri-rutile types) have been suggested for this Fe-Sb-oxide. To address these uncertainties, we studied tripuhyite from Tripuhy, Minas Gerais, Brazil (type material) and Falotta, Grisons, Switzerland using single-crystal and powder X-ray diffraction (XRD), optical microscopy and electron microprobe analysis.

Electron microprobe analyses showed the Fe/Sb ratios to be close to one in tripuhyite from both localities. Single crystal XRD studies revealed that tripuhyite from the type locality and from Falotta have the rutile structure (P42mnm, a = 4.625(4) c = 3.059(5) and a = 4.6433(10) c= 3.0815(9) Å, respectively). Despite careful examination, no evidence for a tripled c parameter, characteristic of the tri-rutile structure, was found and hence the structure was refined with the rutile model and complete Fe-Sb disorder over the cationic sites in both cases (type material: R1 = 3.61%; Falotta material: R1 = 3.96%). The specular reflectance values of type material tripuhyite and lewisite were measured and the following refractive indices calculated (after Koenigsberger): tripuhyite nmin = 2.14, nmax = 2.27; lewisite (cubic) n = 2.04.

These results, together with those of 57Fe and 121Sb Mössbauer spectroscopy on natural and synthetic tripuhyites reported in the literature, indicate that the chemical formula of tripuhyite is Fe3+Sb5+O4 (FeSbO4). Thus, tripuhyite can no longer be attributed to the tapiolite group of minerals of general type AB2O6. A comparison of the results presented with the mineralogical data of squawcreekite suggests that tripuhyite and squawcreekite are identical. In consequence, tripuhyite was redefined as Fe3+Sb5+O4 with a rutile-type structure. Both the proposed new formula and unit cell (rutile-type) of tripuhyite as well as the discreditation of squawcreekite have been approved by the Commission on New Mineral and Mineral Names (CNMMN) of the International Mineralogical Association (IMA).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amador, J. and Rasines, I. (1981) Crystal data for the double oxides MSbO4 (M=Cr, Fe). Journal of Applied Crystallography, 14, 348349CrossRefGoogle Scholar
Baker, R.J. and Stevens, J.G. (1977) 121Mossbauer Spectroscopy. Part II. Comparison of structure and bonding in Sb(III) and Sb(V) minerals. Revue de Chimie Minérale, 14, 339346Google Scholar
Baptista, A. (1981) Contribuição ao estudo da lewisita e da tripuíta. Anais da Academia Brasileira de Ciências, 53, 283287(in Portuguese).Google Scholar
Baur, W.H. and Khan, A.A. (1971) Rutile-type compounds. IV. SiO2, GeO2 and a comparison with other rutile-type structures. Acta Crystallographica , B27, 21332139CrossRefGoogle Scholar
Benvenutti, E.V., Gushikem, Y., Vasquez, A., Decastro, S.C. and Zaldivar, G.A. (1991) X-ray photoelectron- spectroscopy and Mössbauer-spectroscopy study of iron(III) and antimony(V) oxides grafted onto a silica-gel surface. Journal of the Chemical Society D, Chemical Communications, 19, 13251327CrossRefGoogle Scholar
Berlepsch, P. and Brugger, J. (1999) Über Tripuhyit (FeSbO4) und Squawcreekit (FeSbO4). Schweizer Strahler, 11/9, 425437(in German and French).Google Scholar
Berry, F.J., Holden, J.G. and Loretto, M.H. (1986) The superlattice in iron antimonate: the detection of cationic ordering by electron diffraction. Solid State Communications, 59/6, 397399CrossRefGoogle Scholar
Berry, F.J., Holden, J.G., Loretto, M.H. and Urch, D.S. (1987a) Iron antimonate. Journal of the Chemical Society, Dalton Transactions, 7, 17271731CrossRefGoogle Scholar
Berry, F.J., Holden, J.G. and Loretto, M.H. (1987b) Identification of space group and detection of cationic ordering in iron antimonate using conventional and convergent-beam electron-microscopy. Journal of the Chemical Society, Faraday Transactions, 83, 615.CrossRefGoogle Scholar
Brandt, K. (1943) X-ray studies on ABO4 compounds of rutile type and AB2O6 compounds of columbite type. Arkiv for Kemi, Mineralogi och Geologi, 17A(15), 18.Google Scholar
Bruker AXS (1997) XPREP Ver. 5.1: A computer program for data preparation and reciprocal space exploration. Bruker Analytical X-ray systems, Madison, WI 53719-1173, USA.Google Scholar
Bruker AXS (1998) SMART Ver. 5.0/NT: A software package for CCD detector systems. Bruker Analytical X-ray systems, Madison, WI 53719- 1173, USA.Google Scholar
Bruker AXS (1999) SAINT+ Ver. 6.01/NT: A computer program for data reduction . Bruker Analytical X-ray systems, Madison, WI 53719—1173, USA.Google Scholar
Byström, A., Hök, B. and Mason, B. (1941) The crystal structure of zinc metantimonate and similar compounds. Arkiv for Kemi, Mineralogi och Geologi, 15B(4), 18.Google Scholar
Christensen, A.N., Johansson, T. and Lebech, B. (1976) Magnetic properties and structure of chromium niobium oxide and iron tantalum oxide. Journal of Physics C, 9, 26012610CrossRefGoogle Scholar
Criddle, A.J. (1990a) The reflected-light polarizing microscope and microscope-spectrophotometer. Pp. 1—36 in: Advanced Microscopic Studies of Ore Minerals (Jambor, J.L., and Vaughan, D.J., editors). Short course handbook, vol. 17, Mineralogical Association of Canada, Ottawa.Google Scholar
Criddle, A.J. (1990b) Microscope-photometry, reflectance measurement, and quantitative color. Pp. 135—170 in: Advanced Microscopic Studies of Ore Minerals (Jambor, J.L., and Vaughan, D.J., editors). Short course handbook, vol. 17, Mineralogical Association of Canada, Ottawa.Google Scholar
Davanzo, C.U., Gushikem, Y., Decastro, S.C., Benvenutti, E.V. and Vasquez, A. (1996) FeSbO4 phase formed at the surface of antimony(V) oxide grafted on silica-gel. Journal of the Chemical Society, Faraday Transactions, 92, 15691572CrossRefGoogle Scholar
Donaldson, J.D., Kjekshus, A., Nicholson, D.G. and Rakke, T. (1975) Properties of Sb-compounds with rutile-like structures. Acta Chemica Scandinavica, A29, 803809CrossRefGoogle Scholar
Embrey, P.G. and Criddle, A.J. (1978) Error problems in the two-media method of deriving the optical constants n and k from measured reflectances. American Mineralogist, 63, 853862Google Scholar
Nonius, Enraf (1983) Structure determination package (SDP). Enraf Nonius, Delft, Holland.Google Scholar
Foord, E.E., Hlava, P.F., Fitzpatrick, J.J., Erd, R.C. and Hinton, R.W. (1991) Maxwellite and squawcreekite, two new minerals from the Black Range Tin District, Catron County, New Mexico, U.S.A. Neues Jahrbuch für Mineralogie Monatshefte, 363384.Google Scholar
Gakiel, U. and Malamud, M. (1969) On the valence of iron in tripuhyite: a Mossbauer study. American Mineralogist, 54, 299301Google Scholar
Geiger, T. and Cabalzar, W. (1988) Tripuhyit — ein neuer Fund von Falotta GR. Schweizer Strahler , 8, 17Google Scholar
Holland, T.J.B. and Redfern, S.A.T. (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine , 61, 6577CrossRefGoogle Scholar
Hussak, E. and Prior, G.T. (1895) Derbylite and zirkelite, two new Brazilian minerals. Mineralogical Magazine, 11, 8088CrossRefGoogle Scholar
Hussak, E. and Prior, G.T. (1897) On tripuhyite, a new antimonate of iron, from Tripuhy, Brazil. Mineralogical Magazine, 11, 302303CrossRefGoogle Scholar
Landa-Cánovas, A.R., Hansen, S. and Ståhl, K. (1997) Rutile superstructure of Sb0.9V1.1O4. Acta Crystallographica, B53, 221230Google Scholar
Mason, B. and Vitaliano, C.J. (1953) The mineralogy of the antimony oxides and antimonates. Mineralogical Magazine, 30, 100112CrossRefGoogle Scholar
Palache, C., Bermann, H. and Frondel, C. (1951) The System of Mineralogy of J.D. Dana and E.S. Dana, 7th edition, Vol. 2. John Wiley & Sons Inc., New York, London.Google Scholar
Rouse, R.C., Dunn, P.J., Peacor, D.R. and Wang, L. (1998) Structural studies of the natural antimonian pyrochlores. Journal of Solid State Chemistry, 141, 562569CrossRefGoogle Scholar
Sergeev, N.B., Kuz’mina, O.V. and Zvezdinskaya, L.V. (1997) Squawcreekite, Fe3+SbO4, from the Olimpiada deposit in the Enisei Ridge: the first find in Russia. Transactions of the Russian Academy of 1110—1112 (translation from Doklady Akademii Nauk SSSR, 356(4), 525527).Google Scholar
G.M, Sheldrick (1997) SHELXS—97 and SHELXL-97. Computer programs for crystal structure determination and refinement. University of Göttingen, Germany.Google Scholar
Tavora, E. (1955) X-ray diffraction powder data for some minerals from Brazilian localities. Anais da Academia Brasileira de Ciêincias, 27, 727Google Scholar
Teller, R.G., Brazdil, J.F., Grasselli, R.K. and Yelon, W. (1985) Phase cooperation in oxidation catalysis — structural studies of the iron antimonate-antimony oxide system. Journal of the Chemical Society, Faraday Transactions, 81, 1693.CrossRefGoogle Scholar
Zubkova, N.V., Pushcharovsky, D.Y., Atencio, D., Arakcheeva, A.V. and Matioli, P.A. (2000) The crystal structure of lewisite, (Ca,Sb3+,Fe3+,Al,Na, Mn,)2(Sb5+,Ti)2O6(OH). Journal of Alloys and Compounds, 296, 7579CrossRefGoogle Scholar