Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-22T23:09:15.507Z Has data issue: false hasContentIssue false

The Tregonning granite: petrogenesis of Li-mica granites in the Cornubian batholith

Published online by Cambridge University Press:  05 July 2018

Maurice Stone*
Affiliation:
Geologisk Institut, Aarhus Universitet, C.F. Møllers Allé 8000 Aarhus C, Denmark

Abstract

Li-mica (zinnwaldite and/or lepidolite)—topaz—albite granites in the Tregonning—Godolphin pluton and similar rocks in the St. Austell pluton appear to be petrogenetically unrelated to the spatially associated biotite granites. Evidence is provided by lack of development of Li-mica granites at roof zones of biotite granites and markedly different trends and composition fields in bivariate plots such as Li vs. Cs, Rb vs. Sr and Nb vs. Zr. Thus, differentiation of biotite granite magma is unlikely to have generated Li-mica granite magma, as also, on its own, is partial melting of biotite granite or biotiteabsent residual lower crust. However, partial melting of biotite-rich residual rocks involving biotite breakdown could yield a trace alkali- and F-enriched melt, although this would require marked femic mineral, K-feldspar and anorthite fractionation, and Na-enrichment. It is proposed that volatiles derwed from either a mantle source or the crust/mantle interface have aided metasomatism of either residual S-type crust that earlier provided S-type biotite granite magma, or basic (biotite-rich) granitoid, to produce a low-temperature, low-viscosity Li-mica granite melt that rose rapidly in the crust soon after the emplacement of associated biotite granites.

Type
Petrology and Geochemistry
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Present address: Earth Resources Centre, University of Exeter, North Park Road, Exeter, Devon EX4 4QE, England.

References

Al-Turki, K. I. T. (1972) A petrographic and chemical study of the Carnmenellis granite and associated rocks. Unpubl. Ph.D. Thesis, University of Exeter.Google Scholar
Burt, D. M., Sheridan, M. F., Bikun, J. V., and Christiansen, E. H. (1982) Topaz rhyolites distribution, origin, and significance for exploration. Econ. Geol., 77, 1818–36.CrossRefGoogle Scholar
Christiansen, E. H., Burt, D. M., Sheridan, M. F., and Wilson, R. T. (1983) The petrogenesis of topaz rhyolites from the western United States. Contrib. Mineral. Petrol., 83, 1620.CrossRefGoogle Scholar
Clemens, J. D. and Wall, V. J. (1981) Origin and crystallization of some peraluminous (S-type) granitic magmas. Canad. Mineral., 19, 111–31.Google Scholar
Clemens, J. D. and Wall, V. J. (1988) Controls on the mineralogy of S-type volcanic and plutonic rocks. Lithos, 21, 5366.CrossRefGoogle Scholar
Clemens, J. D. and Wall, V. J., Holloway, J. R., and White, A. J. R. (1986) Origin of an A-type granite: experimental constraints. Am. Mineral., 71, 317–24.Google Scholar
Collins, W. J., Beams, S. D., White, A. J. R., and Chappell, B. W. (1982) Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib. Mineral. Petrol., 80, 189200.CrossRefGoogle Scholar
Creaser, R. A., Price, R. C., and Wormald, R. J. (1991) A-type granites revisited: assessment of a residual source model. Geology, 19, 163–6.2.3.CO;2>CrossRefGoogle Scholar
Dangerfield, J., Hawkes, J. R., and Hunt, E. C. (1980) The distribution of lithium in the St. Austell granite. Proc. UssherSoc., 5, 7680.Google Scholar
Darhyshire, D. P. F. and Shepherd, T. J. (1985) Chronology of granite magmatism and associated mineralization, SW England. J. Geol. Soc. London, 142, 1159–77.CrossRefGoogle Scholar
Darhyshire, D. P. F. and Shepherd, T. J. (1987) Chronology of magmatism in south west England; the minor intrusions. Proc. Ussher Soc., 6, 431–8.Google Scholar
Evensen, N. M., Hamilton, P. J., and O'Nions, R. K. (1978) Rare-earth abundance in chrondritic meteorites. Geochim. Cosmochim. Acta, 42, 1199–212.CrossRefGoogle Scholar
Exley, C. S. (1959) Magmatic differentiation and alteration in the St. Austell granite. Q. J. Geol. Soc. London, 114, 197230.CrossRefGoogle Scholar
Exley, C. S. and Stone, M. (1982) Hercynian intrusive rocks. In Igneous Rocks of the British Isles (D. S. Sutherland, ed.). J. Wiley and Sons, pp. 287320.Google Scholar
Exley, C. S. and Floyd, P. A. (1983) Composition and petrogenesis of the Cornubian batholith and post-orogenic volcanic rocks in SW England. In The Variscan Fold Belt in the British Isles (P. L. Hancock, ed.). Adam Hilger Ltd., Bristol, 153-77.Google Scholar
George, M. C., Stone, M., Fejer, E. E., and Symes, R. F. (1981) Triplite from the Megiliggar Rocks, Cornwall. Mineral. Mag., 44, 236–8.CrossRefGoogle Scholar
Green, T. H. (1976) Experimental generation of cordierite or garnet-bearing granitic liquids from a pelitic composition. Geology, 4, 85–8.2.0.CO;2>CrossRefGoogle Scholar
Hanson, G. H. (1978) The application of trace elements to the petrogenesis of igneous rocks of granitic composition. Earth Planet. Sci. Lett., 38, 2643.CrossRefGoogle Scholar
Heath, M. J. (1982) Uranium in the Dartmoor granite: geochemical and radiogeological investigations in relation to the geothermal anomaly of south-west England. Unpubl. Ph.D. Thesis, University of Exeter.Google Scholar
Henderson, C. M. B., Martin, J. S., and Mason, R. A. (1989) Compositional reactions in Li-micas from S.W. England and France; an ion- and electron microprobe study. Mineral. Mag., 53, 627–69.Google Scholar
Henderson, P. (1982) Inorganic Geochemistry. Pergamon Press, 353 pp.Google Scholar
Hill, P. I. and Manning, D. A. C. (1987) Multiple intrusions and pervasive hydrothermal alteration in the St. Austell granite, Cornwall. Proc. Ussher Soc., 6, 447–53.Google Scholar
Leat, P. T., Thompson, R. N., Morrison, M. A., Hendry, G. L., and Trayhorn, S. C. (1987) Geody-namic significance of post-Variscan intrusive and extrusive potassic magmatism in SW England. Trans. R. Soc. Edinb.: Earth ScL, 77 (for 1986), 349-60.CrossRefGoogle Scholar
Lister, C. J. (1978) Some tourmalinised rocks from Cornwall and Devon. Proc. Ussher Soc., 4, 211214.Google Scholar
Mackenzie, D. E., Black, L. P., and Sun, S.-S. (1988) Origin of alkali-feldspar granites: an example from the Poimena granite, northeastern Tasmania, Australia. Geochim. Cosmochim. Acta, 52, 2507–24.CrossRefGoogle Scholar
Manning, D. A. C. (1981) The effect of fluorine on liquidus phase relationships in the system Q-Ab-Or with excess water at 1 kb. Contrib. Mineral. Petrol., 76, 205–15.CrossRefGoogle Scholar
Manning, D. A. C. and Exley, C. S. (1984) The origins of late-stage rocks in the St. Austell granite—-a re-interpretation. J. Geol. Soc. London, 141, 581–91.CrossRefGoogle Scholar
Manning, D. A. C. and Exley, C. S. and Hill, P. I. (1990) The petrogenetic and metallogenetic significance of topaz granite from the southwest England orefield. In Ore-bearing granite systems; petrogenesis and mineralizing processes (H. J. Stein and J. L. Hannah, eds). Geol. Soc. Amer. Spec. Paper, 246, 5169.CrossRefGoogle Scholar
Miller, C. F. (1985) Are strongly peraluminous magmas derived from pelitic sedimentary sources? J. Geol., 93, 673–89.CrossRefGoogle Scholar
Pearce, J., Harris, N. B. W., and Tindle, A. G. (1984) Trace element discrimination diagrams for the tecto-nic interpretation of granitic rocks. J. Petrol., 25, 956–83.CrossRefGoogle Scholar
Pichavant, M. and Manning, D. A. C. (1984) Petrogenesis of tourmaline granites and topaz granites; the contribution of experimental data. Phys. Earth Planet. Int., 35, 3150.Google Scholar
Power, G. M. (1968) Chemical variation in tourmalines from south-west England. Mineral. Mag., 36, 1078–89.Google Scholar
Puziewicz, J. and Johannes, W. (1990) Experimental study of a biotite-bearing granitic system under water-saturated and water-undersaturated con-ditions. Contrib. Mineral. Petrol., 104, 397406.CrossRefGoogle Scholar
Stone, M. (1975) Structure and petrology of the Tregonning-Godolphin granite, Cornwall. Proc. Geol. Assoc., 86, 155–70.CrossRefGoogle Scholar
Stone, M. (1982) The behaviour of tin and some other trace elements during granite differentiation, west Corn-wall, England. In Metallization Associated with Acid Magmatism (A. M. Evans, ed.). J. Wiley and Sons, Chichester, 339-55.Google Scholar
Stone, M. (1984) Textural evolution of lithium mica granites in the Cornubian batholith. Proc. Geol. Assoc., 95, 2841.CrossRefGoogle Scholar
Stone, M. (1987) Geochemistry and origin of the Carnmen- ellis pluton, Cornwall: further considerations. Proc. Ussher Soc., 6, 454-60.Google Scholar
Stone, M. (1988) The significance of almandine garnets in the Lundy and Dartmoor granites. Mineral. Mag., 52, 651–8.CrossRefGoogle Scholar
Stone, M. (1990) The Lundy granite: a geochemical and petrogenetic comparison with Hercynian and Ter-tiary granites. Ibid., 54, 431-46.Google Scholar
Stone, M. and Awad, N. T. I. (1988) Behaviour of trace- alkali and other elements at Tregonning granite- pelite contacts. Proc. Ussher Soc., 7, 4751.Google Scholar
Stone, M. and Awad, N. T. I. (1986) High heat production granites of Southwest England and their associated mineralization: a review. Trans. Inst. Min. MetalI., 95, B2536.Google Scholar
Stone, M. and Exlcy, C. S. (1984) Emplacement of the Porthmeor granite pluton, west Cornwall. Ibid., 6, 42-5.Google Scholar
Stone, M. (1989) Geochemistry of the Isles of Scilly pluton. Proc, Ussher Soc., 7, 152–7.Google Scholar
Stone, M. and George, M. C. (1978) Amblygonite in leuco- granites of the Tregonning-Godolphin granite, Corn wall. Mineral. Mag., 42, 151–2.CrossRefGoogle Scholar
Stone, M. (1983) Some phosphate minerals at the Megiliggar Rocks, Cornwall. Proc. Ussher Soc., 5, 428–31.Google Scholar
Stone, M. and George, M. C. (1988) Compositions of trioctahedral micas in the Cornubian batholith. Mineral. Mag., 52, 175–92.CrossRefGoogle Scholar
Taylor, R. T. and Wilson, A. C. (1975) Notes on some igneous rocks of west Cornwall. Proc. Ussher Soc., 3, 255–52.Google Scholar
Thorpe, R. S. (1987) Permian K-rich volcanic rocks of Devon: petrogenesis, tectonic setting and geological significance. Trans. R. Soc. Edinb.: Earth Sci., 77 (for 1986), 361-5.CrossRefGoogle Scholar
Vielzeuf, D. and Holtoway, J. R. (1988) Experimental determination of fluid-absent melting in the pelitic system. Contrib. Mineral. Petrol., 98, 257–76.CrossRefGoogle Scholar
White, A. J. R. and Chappell, B. W. (1977) Ultrameta- morphism and granitoid genesis. Tectonophys., 43, 722.CrossRefGoogle Scholar
White, A. J. R. and Chappell, B. W. (1983) Granitoid types and their distribution in the Lachlan Fold Belt, southeastern Australia. Geol. Soc. Amer. Mem., 159, 2134.Google Scholar
White, A. J. R. and Chappell, B. W. (1988) Some supracrustal (S-type) granites of the Lachlan fold belt. Trans. R. Soc. Edinb.: Earth Sci., 79, 169–81.Google Scholar
Winkler, H. G. F. (1979) Petrogenesis of Metamorphic Rocks, 5th edit. Springer Verlag, Heidelberg, 348 pp.Google Scholar