Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T07:16:36.611Z Has data issue: false hasContentIssue false

Trace elements in hydrothermal chalcopyrite

Published online by Cambridge University Press:  28 February 2018

Luke L. George*
Affiliation:
School of Physical Sciences, University of Adelaide, Adelaide S.A. 5005, Australia
Nigel J. Cook
Affiliation:
School of Chemical Engineering, University of Adelaide, Adelaide S.A. 5005, Australia
Bryony B. P. Crowe
Affiliation:
School of Physical Sciences, University of Adelaide, Adelaide S.A. 5005, Australia
Cristiana L. Ciobanu
Affiliation:
School of Chemical Engineering, University of Adelaide, Adelaide S.A. 5005, Australia
*

Abstract

Concentration data are reported for 18 trace elements in chalcopyrite from a suite of 53 samples from 15 different ore deposits obtained by laser-ablation inductively-coupled plasma-mass spectrometry. Chalcopyrite is demonstrated to host a wide range of trace elements including Mn, Co, Zn, Ga, Se, Ag, Cd, In, Sn, Sb, Hg, Tl, Pb and Bi. The concentration of some of these elements can be high (hundreds to thousands of ppm) but most are typically tens to hundreds of ppm. The ability of chalcopyrite to host trace elements generally increases in the absence of other co-crystallizing sulfides. In deposits in which the sulfide assemblage recrystallized during syn-metamorphic deformation, the concentrations of Sn and Ga in chalcopyrite will generally increase in the presence of co-recrystallizing sphalerite and/or galena, suggesting that chalcopyrite is the preferred host at higher temperatures and/or pressures. Trace-element concentrations in chalcopyrite typically show little variation at the sample scale, yet there is potential for significant variation between samples from any individual deposit. The Zn:Cd ratio in chalcopyrite shows some evidence of a systematic variation across the dataset, which depends, at least in part, on temperature of crystallization. Under constant physiochemical conditions the Cd:Zn ratios in co-crystallizing chalcopyrite and sphalerite are typically approximately equal. Any distinct difference in the Cd:Zn ratios in the two minerals, and/or a non-constant Cd:Zn ratio in chalcopyrite, may be an indication of varying physiochemical conditions during crystallization.

Chalcopyrite is generally a poor host for most elements considered harmful or unwanted in the smelting of Cu, suggesting it is rarely a significant contributor to the overall content of such elements in copper concentrates. The exceptions are Se and Hg which may be sufficiently enriched in chalcopyrite to exceed statutory limits and thus incur monetary penalties from a smelter.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Brian O'Driscoll

References

Andersen, J.C.Ø., Stickland, R.J., Rollinson, G.K. and Shail, R.K. (2016) Indium mineralisation in SW England: Host parageneses and mineralogical relations. Ore Geology Reviews, 78, 213238.Google Scholar
Ayres, R.U., Ayres, L.W. and Råde, I. (2013) The Life Cycle of Copper; its Co-Products and Byproducts. Eco-Efficiency in Industry and Science, Vol. 13. Kluwer Academic Publishers, Dordrecht, 199 pp.Google Scholar
Bajwah, Z., Seccombe, P. and Offler, R. (1987) Trace element distribution, Co: Ni ratios and genesis of the Big Cadia iron-copper deposit, New South Wales, Australia. Mineralium Deposita, 22, 292300.Google Scholar
Barnes, S.J. and Ripley, E.M. (2016) Highly siderophile and strongly chalcophile elements in magmatic ore deposits. Pp. 725774 in: Highly Siderophile and Strongly Chalcophile Elements in High-Temperature Geochemistry and Cosmochemistry (Harvey, J. and Day, J.M.D., editors). Reviews in Mineralogy & Geochemistry, 81. Mineralogical Society of American and the Geochemical Society, Chantilly, Virginia, USA.Google Scholar
Barnes, S.J., Cox, R.A. and Zientek, M.L. (2006) Platinum-group element, gold, silver and base metal distribution in compositionally zoned sulfide droplets from the Medvezky Creek Mine, Noril'sk, Russia. Contributions to Mineralogy and Petrology, 152, 187200.Google Scholar
Barrie, C.D., Boyle, A.P., Cook, N.J. and Prior, D.J. (2010) Pyrite deformation textures in the massive sulfide ore deposits of the Norwegian Caledonides. Tectonophysics, 483, 269286.CrossRefGoogle Scholar
Belousov, I., Large, R.R., Meffre, S., Danyushevsky, L.V., Steadman, J. and Beardsmore, T. (2016) Pyrite compositions from VHMS and orogenic Au deposits in the Yilgarn Craton, Western Australia: Implications for gold and copper exploration. Ore Geology Reviews, 79, 474499.CrossRefGoogle Scholar
Bethke, P.M. and Barton, P.B. (1971) Distribution of some minor elements between coexisting sulphide minerals. Economic Geology, 66, 140163.CrossRefGoogle Scholar
Blackburn, W.H. and Schwendeman, J.F. (1977) Trace-element substitution in galena. Canadian Mineralogist, 15, 365373.Google Scholar
Both, R.A., McElhinney, R. and Toteff, S. (1995) The Angas Zn-Pb-Ag deposit in the Kanmantoo Group, South Australia: synsedimentary or metamorphic? Pp. 847850 in: Mineral Deposits: From their origin to their Environmental Impacts (Pasava, J., Kríbek, B. and Zák, K., editors). A. A. Balkema, Rotterdam.Google Scholar
Brill, B. (1989) Trace-element contents and partitioning of elements in ore minerals from the CSA Cu–Pb–Zn deposit, Australia. Canadian Mineralogist, 27, 263274.Google Scholar
Butler, I.B. and Nesbitt, R.W. (1999) Trace element distributions in the chalcopyrite wall of a black smoker chimney: insights from laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS). Earth and Planetary Science Letters, 167, 335345.CrossRefGoogle Scholar
Cabri, L.J., Campbell, J.L., Laflamme, J.H.G., Leigh, R.G., Maxwell, J.A. and Scott, J.D. (1985) Proton-microprobe analysis of trace elements in sulfides from some massive-sulfide deposits. Canadian Mineralogist, 23, 133148.Google Scholar
Chen, L.M., Song, X.Y., Danyushevsky, L.V., Wang, Y.S., Tian, Y.L. and Xiao, J.F. (2014) A laser ablation ICP-MS study of platinum-group and chalcophile elements in base metal sulfide minerals of the Jinchuan Ni-Cu sulfide deposit, NW China. Ore Geology Reviews, 65, 955967.Google Scholar
Cioacă, M.E., Munteanu, M., Qi, L. and Costin, G. (2014) Trace element concentrations in porphyry copper deposits from Metaliferi Mountains, Romania: A reconnaissance study. Ore Geology Reviews, 63, 2239.Google Scholar
Ciobanu, C.L., Cook, N.J. and Ivascanu, P. (2001) ore deposits of the Vorţa-Dealul Mare area, South Apuseni Mts., Romania: Textures and a revised genetic model. ABCD-Geode 2001. Romanian Journal of Mineral Deposits, 79, 4647.Google Scholar
Ciobanu, C.L., Cook, N.J. and Stein, H. (2002) Regional setting and geochronology of the Late Cretaceous banatitic magmatic and metallogenetic belt. Mineralium Deposita, 37, 541567.Google Scholar
Cioflica, G. and Vlad, S. (1981) Cupriferous mineralization at Ciclova. An Universitatea din Bucuresti Serie de Geologie, 30, 117.Google Scholar
Cioflica, G., Vlad, S. and Stoici, S. (1971) Repartition de la mineralisation dans les skarns de Baita Bihorului. Revue Roumaine de Geologie, Geophysique et Geographie, Serie de Geologie, 15, 4358.Google Scholar
Cioflica, G., Vlad, S., Volanschi, E. and Stoici, S. (1977) Magnesian skarns and associated mineralization at Baita Bihor. Studii şi Cercetări de Geologie, Geofizică şi Geografie, s. Geologie, 22, 3957.Google Scholar
Constantinescu, E., Ilinca, G. and Ilinca, A. (1988) Laramian hydrothermal alteration and ore deposition in the Oravita-Ciclova area. Southwestern Banat. Dări de Seamă, Institutul Geologic Geofizica, 72–73, 1326.Google Scholar
Cook, N.J. (1992) Antimony-rich mineral parageneses and their association with Au minerals within massive sulphide deposits at Sulitjelma, Norway. Neues Jahrbuch für Mineralogie Monatsheft, 3, 97106.Google Scholar
Cook, N.J. (1994) Post-recrystallisation phenomena in metamorphosed stratabound sulphide ores: a comment. Mineralogical Magazine, 58, 480484.Google Scholar
Cook, N.J. (1996) Mineralogy of the sulphide deposits at Sulitjelma, northern Norway. Ore Geology Reviews, 11, 303338.Google Scholar
Cook, N.J. (2001) Ore mineralogical investigation of the Mofjell deposit (Mo i Rana, Nordland, Norway) with emphasis on gold and silver distribution. Norges Geologiske Undersøkelse Report 2001.051, 31.Google Scholar
Cook, N.J. and Damian, G.S. (1997) New data on “plumosite” and other sulphosalt minerals from the Herja hydrothermal vein deposit, BaiaMare district, Rumania. Geologica Carpathica, 48, 387399.Google Scholar
Cook, N.J., Halls, C. and Kaspersen, P.O. (1990) The geology of the Sulitjelma ore field, Northern Norway – some new interpretations. Economic Geology, 85, 17201737.CrossRefGoogle Scholar
Cook, N.J., Halls, C. and Boyle, A.P. (1993) Deformation and metamorphism of massive sulphides at Sulitjelma, Norway. Mineralogical Magazine, 57, 6781.Google Scholar
Cook, N.J., Spry, P.G. and Vokes, F.M. (1998) Mineralogy and textural relationships among sulphosalts and related minerals in the Bleikvassli Zn-Pb-(Cu) deposit, Nordland, Norway. Mineralium Deposita, 34, 3556.Google Scholar
Cook, N.J., Ciobanu, C.L., Pring, A., Skinner, W., Shimizu, M., Danyushevsky, L., Saini-Eidukat, B. and Melcher, F. (2009) Trace and minor elements in sphalerite: A LA-ICP-MS study. Geochimica et Cosmochimica Acta, 73, 47614791.Google Scholar
Cook, N.J., Ciobanu, C.L., Danyushevsky, L.V. and Gilbert, S. (2011) Minor and trace elements in bornite and associated Cu–(Fe)-sulfides: A LA-ICP-MS study. Geochimica et Cosmochimica Acta, 75, 64736496.CrossRefGoogle Scholar
Cook, N.J., Ciobanu, C.L. and Ehrig, K. (2015) Insights into zonation within the olympic Dam Cu-U-Au-Ag deposit from trace element signatures of sulfide minerals. Abstract, SEG 2015 Conference, Hobart, Tasmania, Australia. Society of Economic Geologists.Google Scholar
Cook, N., Ciobanu, C.L., George, L., Zhu, Z.Y., Wade, B. and Ehrig, K. (2016) Trace element analysis of minerals in magmatic-hydrothermal ores by laser ablation inductively-coupled plasma mass spectrometry: Approaches and opportunities. Minerals, 6, 111.Google Scholar
Danyushevsky, L., Robinson, P., Gilbert, S., Norman, M., Large, R., McGoldrick, P. and Shelley, M. (2011) Routine quantitative multi-element analysis of sulphide minerals by laser ablation ICP-MS: Standard development and consideration of matrix effects. Geochemistry: Exploration, Environment, Analysis, 11, 5160.Google Scholar
Dare, S.A., Barnes, S.J., Prichard, H.M. and Fisher, P.C. (2010) The timing and formation of platinum-group minerals from the Creighton Ni-Cu-platinum-group Element sulfide deposit, Sudbury, Canada: Early crystallization of PGE-rich sulfarsenides. Economic Geology, 105, 10711096.Google Scholar
Demir, Y., Uysal, I., Burhan Sadiklar, M. and Sipahi, F. (2008) Mineralogy, mineral chemistry, and fluid inclusion investigation of Köstere hydrothermal vein-type deposit (Gümüşhane, NE-Turkey). Neues Jahrbuch für Mineralogie-Abhandlungen: Journal of Mineralogy and Geochemistry, 185, 215232.Google Scholar
Demir, Y., Uysal, İ. and Sadıklar, M.B. (2013) Mineral chemical investigation on sulfide mineralization of the Istala deposit, Gümüşhane, NE-Turkey. Ore Geology Reviews, 53, 306317.Google Scholar
Djon, M.L.N. and Barnes, S.J. (2012) Changes in sulfides and platinum-group minerals with the degree of alteration in the Roby, Twilight, and High Grade Zones of the Lac des Iles Complex, Ontario, Canada. Mineralium Deposita, 47, 875896.CrossRefGoogle Scholar
Donnay, G., Corliss, L.M., Donnay, J.D.H., Elliott, N. and Hastings, J.M. (1958) Symmetry of magnetic structures: magnetic structure of chalcopyrite. Physical Review, 112, 19171923.Google Scholar
Dragov, P. and Petrunov, R. (1996) Elazite porphyry copper-precious metals (Au and PGE) deposit. Pp. 171175 in: Proceedings, Annual Meeting of IGCP Project 356, Sofia, Bulgaria. International Geological Correlation Programme.Google Scholar
Duran, C.J., Barnes, S.J. and Corkery, J.T. (2015) Chalcophile and platinum-group element distribution in pyrites from the sulfide-rich pods of the Lac des Iles Pd deposits, Western Ontario, Canada: Implications for post-cumulus re-equilibration of the ore and the use of pyrite compositions in exploration. Journal of Geochemical Exploration, 158, 223242.Google Scholar
Eugster, H.P. (1986) Minerals in hot water. American Mineralogist, 71, 655673.Google Scholar
Flood, B. (1967) Sulphide mineralizations within the Hecla Hoek complex in Vestspitsbergen and Bjørnøya. Norsk Polarinstitutt Årbok, 1967, 109127.Google Scholar
Foord, E.E. and Shawe, D.R. (1989) The Pb–Bi–Ag–Cu–(Hg) chemistry of galena and some associated sulfosalts: a review and some new data from Colorado, California and Pennsylvania. Canadian Mineralogist, 27, 363382.Google Scholar
Fountain, C. (2013) The whys and wherefores of penalty elements in copper concentrates. Pp. 502518 in: MetPlant 2013: Metallurgical Plant Design and Operating Strategies, Vol. 5. Australasian Institute of Mining and Metallurgy, Melbourne, Australia.Google Scholar
Gena, K., Chiba, H., Kase, K., Nakashima, K. and Ishiyama, D. (2013) The Tiger Sulfide Chimney, Yonaguni Knoll IV Hydrothermal Field, Southern Okinawa Trough, Japan: The first reported occurrence of Pt–Cu–Fe-bearing bismuthinite and Sn-bearing chalcopyrite in an active seafloor hydrothermal system. Resource Geology, 63, 360370.Google Scholar
George, L., Cook, N.J., Ciobanu, C.L. and Wade, B.P. (2015) Trace and minor elements in galena: A reconnaissance LA-ICP-MS study. American Mineralogist, 100, 548569.Google Scholar
George, L.L., Cook, N.J. and Ciobanu, C.L. (2016) Partitioning of trace elements in co-crystallized sphalerite–galena–chalcopyrite hydrothermal ores. Ore Geology Reviews, 77, 97116.CrossRefGoogle Scholar
Georgiev, G. (2008) A genetic model of the Elatsite porphyry copper deposit, Bulgaria. Geochemistry, Mineralogy and Petrology, 46, 143160.Google Scholar
Geoscience Australia (2015) Copper Fact Sheet. Australian atlas of minerals resources, mines and processing centres, Geoscience Australia, Commonwealth of Australia. Viewed 8 September 2016, <http://www.australianminesatlas.gov.au/education/fact_sheets/copper.html>>Google Scholar
Gheorghitescu, D. (1975) Mineralogical and geochemical study of formations in the thermal, metasomatic contact at Oravita (Cosovita). Dări de Seamă, Institutul Geologic Geofizica, 61, 59103.Google Scholar
Godel, B. and Barnes, S.J. (2008) Platinum-group elements in sulfide minerals and the whole rocks of the J-M Reef (Stillwater Complex): Implication for the formation of the reef. Chemical Geology, 248, 272294.Google Scholar
Goldschmidt, V.M. (1954) Geochemistry. Soil Science, 78, 156.Google Scholar
Gottesmann, W. and Kampe, A. (2007) Zn/Cd ratios in calcsilicate-hosted sphalerite ores at Tumurtijn-Ovoo, Mongolia. Chemie der Erde – Geochemistry, 67, 323328.Google Scholar
Gotz, A., Damian, G. and Farbas, N. (1990) Contributii la mineralogia bournonitul associat mineralizatiilor din masivul Toroiaga-Baia Borsa. Pp. 467471 in: High-Temperature and High Pressure Crystal Chemistry (Hazen, R.M. and Downs, R.T., editors). Reviews in Mineralogy & Geochemistry, 41. Mineralogical Society of American and the Geochemical Society, Chantilly, Virginia, USA.Google Scholar
Hall, S.R. and Stewart, J.M. (1973) The crystal structure refinement of chalcopyrite, CuFeS2. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 29, 579585.Google Scholar
Harris, D.C., Cabri, L.J. and Nobiling, R. (1984) Silver bearing chalcopyrite, a principal source of silver in the Izok lake massive-sulfide deposit: confirmation by electron and proton-microprobe analyses. Canadian Mineralogist, 22, 493498.Google Scholar
Haydon, R.C. and McConachy, G.W. (1987) The stratigraphic setting of Pb-Zn-Ag mineralization at Broken Hill. Economic Geology, 82, 826856.Google Scholar
Helmy, H.M., Shalaby, I.M. and Rahman, H.A. (2014) Large-scale metal zoning in a late-Precambrian skarn-type mineralization, Wadi Kid, SE Sinai, Egypt. Journal of African Earth Sciences, 90, 7786.Google Scholar
Holwell, D.A. and McDonald, I. (2007) Distribution of platinum-group elements in the Platreef at Overysel, northern Bushveld Complex: A combined PGM and LA-ICP-MS study. Contributions to Mineralogy and Petrology, 154, 171190.Google Scholar
Huston, D.L., Sie, S.H., Suter, G.F., Cooke, D.R. and Both, R.A. (1995) Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits; Part I, Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part II, Selenium levels in pyrite; comparison with delta 34S values and implications for the source of sulfur in volcanogenic hydrothermal systems. Economic Geology, 90, 11671196.Google Scholar
Huston, D.L., Jablonski, W. and Sie, S.H. (1996) The distribution and mineral hosts of silver in eastern Australian volcanogenic massive sulfide deposits. Canadian Mineralogist, 34, 529546.Google Scholar
Islamov, F., Kremenetsky, E., Minzer, E. and Koneev, R. (1999) The Kochbulak-Kairagach ore field. Au, Ag, and Cu deposits of Uzbekistan; Excursion Guidebook (Shayakubov, T. , Islamov, F., Kremenetshy, A. and Seltmann, R. editors). International Field Conference of IGCP-373, Joint SGA-IAGOD symposium, Excursion B6, IGCP-SGA-IAGOD.Google Scholar
Janković, S. (1990) Types of copper deposits related to volcanic environment in the Bor district, Yugoslavia. Geologische Rundschau, 79, 467478.Google Scholar
Janković, S., Herrington, R.J. and Kozelj, D. (1998) The Bor and Majdanpek copper–gold deposits in the context of the Bor metallogenic zone (Serbia, Yugoslavia). Pp. 169178 in: Porphyry and Hydrothermal Copper and Gold Deposits; A Global Perspective (Porter, T.M., editors). Conference proceedings. Australian Mineral Foundation, Glenside, South Australia.Google Scholar
Jenner, F.E. and O'Neill, H.St.C. (2012) Major and trace analysis of basaltic glasses by laser-ablation ICP-MS. Geochemistry Geophysics Geosystems, 13, https:doi.org/10.1029/2011GC003890.Google Scholar
Jensen, M.L. and Whittle, A.W.G. (1969) Sulfur isotopes of the Nairne pyrite deposit, South Australia. Mineralium Deposita, 4, 241247.Google Scholar
Johan, Z. (1988) Indium and germanium in the structure of sphalerite: an example of coupled substitution with copper. Mineralogy Petrology, 39, 211229.Google Scholar
Kase, K. (1987) Tin-bearing chalcopyrite from the Izumo vein, Toyoha Mine, Hokkaido, Japan. Canadian Mineralogist, 25, 913.Google Scholar
Kieft, K. and Damman, A.H. (1990) Indium-bearing chalcopyrite and sphalerite from the Gåsborn area, West Bergslagen, central Sweden. Mineralogical Magazine, 54, 109112.Google Scholar
Kojima, S. and Sugaki, A. (1985) Phase relations in the Cu–Fe–Zn–S system between 500° and 300 °C under hydrothermal conditions. Economic Geology, 80, 158171.Google Scholar
Kovalenker, V., Safonov, Y., Naumov, V. and Rusinov, V. (1997) The epithermal gold-telluride Kochbulak deposit (Uzbekistan). Geology of Ore Deposits, 39, 107128.Google Scholar
Lane, D.J., Cook, N.J., Grano, S.R. and Ehrig, K. (2016) Selective leaching of penalty elements from copper concentrates: A review. Minerals Engineering, 98, 110121.Google Scholar
Lang, B. (1979) The base metals-gold hydrothermal ore deposits of Baia Mare, Romania. Economic Geology, 74, 13361351.Google Scholar
Large, R.R., Danyushevsky, L., Hollit, C., Maslennikov, V., Meffre, S., Gilbert, S., Bull, S., Scott, R., Emsbo, P., Thomas, H., Singh, B. and Foster, J. (2009) Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits. Economic Geology, 104, 635668.CrossRefGoogle Scholar
Layton-Matthews, D., Peter, J.M., Scott, S.D. and Leybourne, M.I. (2008) Distribution, mineralogy, and geochemistry of selenium in felsic volcanic-hosted massive sulfide deposits of the Finlayson Lake district, Yukon Territory, Canada. Economic Geology, 103, 6188.Google Scholar
Li, Y., Kawashima, N., Li, J., Chandra, A.P. and Gerson, A.R. (2013) A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite. Advances in Colloid and Interface Science, 197, 132.Google Scholar
Maslennikov, V.V., Maslennikova, S.P., Large, R.R. and Danyushevsky, L.V. (2009) Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasy volcanic-hosted massive sulfide deposit (Southern Urals, Russia) using laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS). Economic Geology, 104, 11111141.Google Scholar
Maydagán, L., Franchini, M., Lentz, D., Pons, J. and McFarlane, C. (2013) Sulfide composition and isotopic signature of the Altar Cu-Au deposit, Argentina: Constraints on the evolution of the porphyry-epithermal system. Canadian Mineralogist, 51, 813840.Google Scholar
McClenaghan, S.H., Lentz, D.R., Martin, J. and Diegor, W.G. (2009) Gold in the Brunswick No. 12 volcanogenic massive sulfide deposit, Bathurst Mining Camp, Canada: Evidence from bulk ore analysis and laser ablation ICP─ MS data on sulfide phases. Mineralium Deposita, 44, 523557.Google Scholar
McDonough, W.F. and Sun, S.S. (1995) The composition of the Earth. Chemical Geology, 120, 223253.Google Scholar
Mikhlin, Y., Tomashevich, Y., Tauson, V., Vyalikh, D., Molodtsov, S. and Szargan, R. (2005) A comparative X-ray absorption near-edge structure study of bornite, Cu5FeS4, and chalcopyrite, CuFeS2. Journal of Electron Spectroscopy and Related Phenomena, 142, 8388.Google Scholar
Moggi-Cecchi, V., Cipriani, C., Rossi, P., Ceccato, D., Rudello, V. and Somacal, H. (2002) Trace element contents and distribution maps of chalcopyrite: a micro-PIXE study. Periodico di Mineralogia, 71, 101109.Google Scholar
Monteiro, L.V.S., Xavier, R.P., Hitzman, M.W., Juliani, C., de Souza Filho, C.R. and Carvalho, E.D.R. (2008) Mineral chemistry of ore and hydrothermal alteration at the Sossego iron oxide–copper–gold deposit, Carajás Mineral Province, Brazil. Ore Geology Reviews, 34, 317336.Google Scholar
Mular, A.L., Halbe, D.N. and Barratt, D.J. (editors) (2002) Mineral Processing Plant Design, Practice, and Control. Society for Mining, Metallurgy, and Exploration.Google Scholar
Müller, W., Shelley, M., Miller, P. and Broude, S. (2009) Initial performance metrics of a new custom-designed ArF excimer LA-ICPMS system coupled to a two-volume laser ablation cell. Journal of Analytical Atomic Spectrometry, 24, 209214.Google Scholar
Parr, J. and Plimer, I. (1993) Models for Broken Hill-type lead-zinc-silver deposits. Mineral Deposits Modeling. Geological Association of Canada Special Paper, 40, 245288.Google Scholar
Patten, C., Barnes, S.-J., Mathez, E.A. and Jenner, F.E. (2013) Partition coefficients of chalcophile elements between sulfide and silicate melts and the early crystallization history of sulfide liquid: LA-ICP-MS analysis of MORB sulfide droplets. Chemical Geology, 358, 170188.Google Scholar
Pauling, L. and Brockway, L.O. (1932) The crystal structure of chalcopyrite CuFeS2. Zeitschrift für Kristallographie – Crystalline Materials, 82, 188194.Google Scholar
Pearce, C.I., Pattrick, R.A.D., Vaughan, D.J., Henderson, C.M.B. and Van der Laan, G. (2006) Copper oxidation state in chalcopyrite: Mixed Cu d 9 and d 10 characteristics. Geochimica et Cosmochimica Acta, 70, 46354642.Google Scholar
Piña, R., Gervilla, F., Barnes, S.J., Ortega, L. and Lunar, R. (2012) Distribution of platinum-group and chalcophile elements in the Aguablanca Ni-Cu sulfide deposit (SW Spain): Evidence from a LA-ICP-MS study. Chemical Geology, 302, 6175.Google Scholar
Plimer, I.R. (2007) The world's largest Zn-Pb-Ag deposit: a re-evaluation of Broken Hill (Australia). Pp. 12391242 in: Mineral deposits: Digging Deeper (Andrew, C.J., editors). Irish Association for Economic Geology, Dublin.Google Scholar
Plotinskaya, O.Y., Kovalenker, V., Seltmann, R. and Stanley, C. (2006) Te and Se mineralogy of the high-sulfidation Kochbulak and Kairagach epithermal gold telluride deposits (Kurama Ridge, Middle Tien Shan, Uzbekistan). Mineralogy and Petrology, 87, 187207.Google Scholar
Popov, P., Strashimirov, S. and Kanazirski, M. (2000) Assarel-Medet ore field. Pp. 1925 in: Geology and Metallogeny of the Panagyurishte Ore Region. Guide to Excursion A and C (Strashmirov, S. and Popov, P., editors). ABCD–Geode 2000 Workshop, Borovets, May 2000.Google Scholar
Prichard, H.M., Knight, R.D., Fisher, P.C., McDonald, I., Zhou, M.F. and Wang, C.Y. (2013) Distribution of platinum-group elements in magmatic and altered ores in the Jinchuan intrusion, China: An example of selenium remobilization by postmagmatic fluids. Mineralium Deposita, 48, 767786.Google Scholar
Reich, M., Palacios, C., Barra, F. and Chryssoulis, S. (2013) “Invisible” silver in chalcopyrite and bornite from the Mantos Blancos Cu deposit, northern Chile. European Journal of Mineralogy, 25, 453460.Google Scholar
Revan, M.K., Genç, Y., Maslennikov, V.V., Maslennikova, S.P., Large, R.R. and Danyushevsky, L.V. (2014) Mineralogy and trace-element geochemistry of sulfide minerals in hydrothermal chimneys from the Upper-Cretaceous VMS deposits of the eastern Pontide orogenic belt (NE Turkey). Ore Geology Reviews, 63, 129149.Google Scholar
Rubin, J.N. and Kyle, J.R. (1997) Precious metal mineralogy in porphyry-, skarn-, and replacement-type ore deposits of the Ertsberg (Gunung Bijih) District, Irian Jaya, Indonesia. Economic Geology, 92, 535550.Google Scholar
Saager, R. (1967) Drei Typen von Kieslagerstätten im Mofjell-Gebiet, Nordland, und ein neuer Vorschlag zur Gliederung der Kaledonischen Kieslager Norwegens. Norsk Geologisk Tidsskrift, 47, 333358.Google Scholar
Sadati, S.N., Yazdi, M., Mao, J., Behzadi, M., Adabi, M.H., Lingang, X., Zhenyu, C. and Mokhtari, M.A.A. (2016) Sulfide mineral chemistry investigation of sediment-hosted stratiform copper deposits, Nahand-Ivand area, NW Iran. Ore Geology Reviews, 72, 760776.Google Scholar
Schwartz, M.O. (2000) Cadmium in zinc deposits: economic geology of a polluting element. International Geology Review, 42, 445469.Google Scholar
Scott, K.M., Ashley, P.M. and Lawie, D.C. (2001) The geochemistry, mineralogy and maturity of gossans derived from volcanogenic Zn–Pb–Cu deposits of the eastern Lachlan Fold Belt, NSW, Australia. Journal of Geochemical Exploration, 72, 169191.Google Scholar
Seccombe, P.K., Spry, P.G., Both, R.A., Jones, M.T. and Schiller, J.C. (1985) Base metal mineralization in the Kanmantoo Group, South Australia: a regional sulfur isotope study. Economic Geology, 80, 18241841.Google Scholar
Serranti, S., Ferrini, V., Masi, U., Nicoletti, M. and Conde, L.N. (2002) Geochemical features of the massive sulfide (Cu) metamorphosed deposit of Arinteiro (Galicia, Spain) and genetic implications. Periodico di Mineralogia, 71, 2748.Google Scholar
Shalaby, I. M., Stumpfl, E., Helmy, H.M., El Mahallawi, M.M. and Kamel, O.A. (2004) Silver and silver-bearing minerals at the Um Samiuki volcanogenic massive sulphide deposit, Eastern Desert, Egypt. Mineralium Deposita, 39, 608621.CrossRefGoogle Scholar
Shannon, R. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32, 751767.Google Scholar
Shimizu, M., Cioflica, G. and Lupulescu, M. (1995) Ore mineralogy of Romanian deposits. Part I. Stanija and Baita Bihor, Apuseni Mountains and Tincova-Valisor, Banat (SW Carpathians), Romania. Japanese Magazine of Mineralogical Petrological Sciences, 45, 280281.Google Scholar
Simon, G., Kesler, S.E., Essene, E.J. and Chryssoulis, S.L. (2000) Gold in porphyry copper deposits: experimental determination of the distribution of gold in the Cu-Fe-S-Au system at 400 to 700 °C. Economic Geology, 94, 259270.Google Scholar
Smith, J.W., Holwell, D.A., McDonald, I. and Boyce, A.J. (2016) The application of S isotopes and S/Se ratios in determining ore-forming processes of magmatic Ni-Cu-PGE sulfide deposits: A cautionary case study from the northern Bushveld Complex. Ore Geology Reviews, 73, 148174.Google Scholar
Spry, P.G., Plimer, I.R. and Teale, G.S. (2008) Did the giant Broken Hill (Australia) Zn-Pb-Ag deposit melt? Ore Geology Reviews, 34, 223241.Google Scholar
Spry, P.G., Both, R.A., Ogierman, J., McElhinney, R. and Heimann, A. (2010) Origin of the Angas Pb-Zn-Ag deposit, Strathalbyn, South Australia. Society of Economic Geologists SEG 2010 Conference, Keystone, Colorado, Extended Abstract.Google Scholar
Strashimirov, S. (1993) Features in distribution of the ore minerals in the western periphery of the porphyry-copper deposit Assarel. Ann HIMG, 39, 7993 [in Bulgarian].Google Scholar
Strashimirov, S., Petrunov, R. and Kanazirski, M. (2002) Porphyry-copper mineralisation in the central Srednogorie zone, Bulgaria. Mineralium Deposita, 37, 587598.Google Scholar
Subba Rao, D.V. and Naqvi, S.M. (1997) Geological setting, mineralogy, geochemistry and genesis of the Middle Archaean Kalyadi copper deposit, western Dharwar craton, southern India. Mineralium Deposita, 32, 230242.Google Scholar
Szöke, A. and Steclaci, L. (1962) Regiunea Toroiaga, Baia-Borsa: studiu geologic, petrografic, mineralogic sï geochimic. Editura Academiei Republicii Populare Romine.Google Scholar
Thole, R.H. (1976) The geology of the Shamrocke mine, Rhodesia – a stratiform copper deposit. Economic Geology, 71, 202228.Google Scholar
Todd, E.C. and Sherman, D.M. (2003) Surface oxidation of chalcocite (Cu2S) under aqueous (pH = 2–11) and ambient atmospheric conditions: mineralogy from Cu L-and O K-edge X-ray absorption spectroscopy. American Mineralogist, 88, 16521656.Google Scholar
Todd, E.C., Sherman, D.M. and Purton, J.A. (2003) Surface oxidation of chalcopyrite (CuFeS2) under ambient atmospheric and aqueous (pH 2–10) conditions: Cu, Fe L- and O K-edge X-ray spectroscopy. Geochimica et Cosmochimica Acta, 67, 21372146.Google Scholar
Ulrich, T., Golding, S.D., Kamber, B.S., Zaw, K. and Taube, A. (2002) Different mineralization styles in a volcanic-hosted ore deposit: the fluid and isotopic signatures of the Mt Morgan Au–Cu deposit, Australia. Ore Geology Reviews, 22, 6190.Google Scholar
United States Geological Survey (2014) Microanalytical Reference Materials and Accessories. United States Geological Survey. Viewed 6 October 2016, <http://crustal.usgs.gov/geochemical_reference_standards/microanalytical_RM.html>>Google Scholar
Van Achterbergh, E., Ryan, C., Jackson, S. and Griffin, W. (2001) Data reduction software for LA-ICP-MS. Pp. 239–243 in: Laser-Ablation-ICPMS in the earth sciences – principles and applications. Mineralogical Association of Canada (short course series), 29.Google Scholar
Verwoerd, P.J. and Cleghorn, J.H. (1975) Kanmantoo copper orebody. Pp. 560565 in: Economic Geology of Australia and Papua New Guinea – I Metals (Knight, C.L., editors). Australasian Institute of Mining and Metallurgy Monograph, 5.Google Scholar
Vokes, F.M. (1963) Geological studies on the Caledonian pyritic zinc-lead orebody at Bleikvassli, Norland, Norway. Norges Geologiske Undersøkelse, 222, 1126.Google Scholar
Vokes, F.M. (1966) On the possible modes of origin of the Caledonian sulfide ore deposit at Bleikvassli, Nordland, Norway. Economic Geology, 61, 11301139.Google Scholar
Wang, G., Wang, Z.Q., Shi, R., Zhang, Y.L. and Wang, K.M. (2015 a) Mineralogy and isotope geochemical characteristics for Xiaozhen copper deposit, Langao County, Shaanxi Province and their constraint on genesis of the deposit. Geosciences Journal, 19, 281294.Google Scholar
Wang, Z., Xu, D., Zhang, Z., Zou, F., Wang, L., Yu, L. and Hu, M. (2015 b) Mineralogy and trace element geochemistry of the Co-and Cu-bearing sulfides from the Shilu Fe–Co–Cu ore district in Hainan Province of South China. Journal of Asian Earth Sciences, 113, 980997.Google Scholar
Wilson, S., Ridley, W. and Koenig, A. (2002) Development of sulphide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry technique. Journal of Analytical Atomic Spectrometry, 17, 406409.Google Scholar
Winderbaum, L., Ciobanu, C.L., Cook, N.J., Paul, M., Metcalfe, A. and Gilbert, S. (2012) Multivariate analysis of an LA-ICP-MS trace element dataset for pyrite. Mathematical Geosciences, 44, 823842.Google Scholar
Wittmann, A. (1974) Indium. 49-A Crystal Chemistry. In: Handbook of Geochemistry (Wedepohl, K.H., editors). Springer-Verlag, Berlin, v. II/4, 49-A-1-49-A-8.Google Scholar
Wohlgemuth-Ueberwasser, C. C., Viljoen, F., Petersen, S. and Vorster, C. (2015) Distribution and solubility limits of trace elements in hydrothermal black smoker sulfides: An in-situ LA-ICP-MS study. Geochimica et Cosmochimica Acta, 159, 1641.Google Scholar
Zanetell, Z.A. (2007) Penalty Element Separation from Copper Concentrates Utilizing Froth Flotation. Masters thesis, Colorado School of Mines, Colorado, USA.Google Scholar
Supplementary material: File

George et al. supplementary material

Appendices A–C

Download George et al. supplementary material(File)
File 170.4 KB