Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T06:36:04.192Z Has data issue: false hasContentIssue false

Tin and associated metal and metalloid geochemistry by femtosecond LA-ICP-QMS microanalysis of pegmatite–leucogranite melt and fluid inclusions: new evidence for melt–melt–fluid immiscibility

Published online by Cambridge University Press:  05 July 2018

A. Y. Borisova*
Affiliation:
Géosciences Environnement Toulouse, GET - UMR 5563 - OMP - CNRS, 14 Avenue E. Belin, 31400 Toulouse, France Geological Department, Lomonosov Moscow State University, Leninskie Gory, 119899 Moscow, Russia
R. Thomas
Affiliation:
German Research Centre for Geosciences, Potsdam, Germany
S. Salvi
Affiliation:
Géosciences Environnement Toulouse, GET - UMR 5563 - OMP - CNRS, 14 Avenue E. Belin, 31400 Toulouse, France
F. Candaudap
Affiliation:
Géosciences Environnement Toulouse, GET - UMR 5563 - OMP - CNRS, 14 Avenue E. Belin, 31400 Toulouse, France
A. Lanzanova
Affiliation:
Géosciences Environnement Toulouse, GET - UMR 5563 - OMP - CNRS, 14 Avenue E. Belin, 31400 Toulouse, France
J. Chmeleff
Affiliation:
Géosciences Environnement Toulouse, GET - UMR 5563 - OMP - CNRS, 14 Avenue E. Belin, 31400 Toulouse, France
*

Abstract

Granitic pegmatites are exceptional igneous rocks and the possible role of an immiscibility process in their origin is strongly debated. To investigate metal and metalloid behaviour in hydrous peraluminous systems (aluminium saturation index, ASI >1), we analysed 15 quartz-hosted primary melt and fluid inclusions from pegmatites in the Ehrenfriedersdorf Complex (Erzgebirge, Germany) and 26 primary melt inclusions from leucogranites of the Ehrenfriedersdorf district (Germany), Kymi (Finland) and Erongo (Namibia) by femtosecond laser ablation inductively coupled plasma quadrupole mass spectrometry. The results presented here for 32 elements provide evidence for metal and metalloid fractionation between two types of immiscible melts (A and B) and NaCl – HCl-rich brine in the pegmatite system. No evidence for the boundary layer effect was observed in the 40 – 500 μm size melt inclusions that were investigated. The data on the Ehrenfriedersdorf pegmatites allow quantification of the metal and metalloid partitioning between natural NaCl-rich brine and the two types of melt (e.g. KAsbrine/type-A,B melts = 0.01 – 1.7; KSbbrine/type-A,B melts = 10 – 285; KZnbrine/type-A,B melts ≥ 50; KPbbrine/type-A melt ≥ 50; KAgbrine/type-A melt = 46). These data are in accord with existing natural and experimental data on equilibrium fluid – melt partitioning as well as spectroscopic data on the metal and metalloid complexation in hydrous aluminosilicate melts and NaCl – HCl-rich fluids.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bai, T.B. and Koster Van Groos, A.F. (1999) The distribution of Na, K, Rb, Sr, Al, Ge, Cu, W, Mo, La and Ce between granitic melts and coexisting aqueous fluids. Geochimica et Cosmochimica Acta, 63, 11171131.CrossRefGoogle Scholar
Bazarkina, E.F. (2009). Transferts du cadmium et du zinc par phase fluide et vapeur dans les processus hydrothermaux et volcaniques: Etude expérimentale, modélisation physico-chimique et applications géologiques. Unpublished PhD thesis, LMTG, OMP, Toulouse, France, [in French].Google Scholar
Bazarkina, E.F., Pokrovski, G.S., Zotov, A.V. and Hazemann, J-L. (2010) Structure and stability of cadmium chloride complexes in hydrothermal fluids. Chemical Geology, 276, 117.CrossRefGoogle Scholar
Bhalla, P., Holtz, F., Linnen, R.L. and Behrens, H. (2005) Solubility of cassiterite in evolved granitic melts: effect of T, fO2, and additional volatiles. Lithos, 80, 387400.CrossRefGoogle Scholar
Borisova, A.Y., Freydier, R., Polvé, M., Salvi, S., Candaudap, F. and Aigouy, T. (2008) In situ multielemental analysis of the Mount Pinatubo quartzhosted melt inclusions by NIR femtosecond laser ablation-inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research, 32, 209229.CrossRefGoogle Scholar
Borisova, A.Y., Freydier, R., Polvé, M., Jochum, K.P. and Candaudap, F. (2010a) Multi-elemental analysis of ATHO-G rhyolitic glass (MPIDING reference material) by femtosecond and nanosecond LA-ICPMS: evidence for significant heterogeneity of B, V, Zn, Mo, Sn, Sb, Cs, W, Pt and Pb at mm-scale. Geostandards and Geoanalytical Research, 34, 245255.CrossRefGoogle Scholar
Borisova, A.Y., Pokrovski, G.S., Pichavant, M., Freydier, R. and Candaudap, F. (2010b) Arsenic enrichment in hydrous peraluminous melts: insights from femtosecond laser ablation-inductively coupled plasma-quadrupole mass spectrometry and in situ Xray absorption fine structure spectroscopy. American Mineralogist, 95, 10951104.CrossRefGoogle Scholar
Breiter, K., Škoda, R. and Uher, P. (2007) Nb-Ta-Ti-Snoxide minerals as indicators of a peraluminous Pand F-rich granitic system evolution: Podlesí, Czech Republic. Mineralogy and Petrology, 91, 225248.CrossRefGoogle Scholar
Courtieu, C., d’Absac, F.-X., Chmeleff, J., Guillaume, D. and Seydoux-A.M., Guiilaume (2011) Performances of 800 nm femtosecond laser ablation on natural and synthetic quartz. European Journal of Mineralogy, 23, 391400.CrossRefGoogle Scholar
Duc-Tin, Q., Audétat, A. and Keppler, H. (2007) Solubility of tin in (Cl, F)-bearing aqueous fluids at 700ºC, 140 MPa: a LA-ICP-MS study on synthetic fluid inclusions. Geochimica et Cosmochimica Acta, 71, 33233335.CrossRefGoogle Scholar
Farges, F., Linnen, R.L. and Brown, G.E.J. (2006) Redox and speciation of tin in hydrous silicate glasses: a comparison with Nb, Ta, Mo and W. The Canadian Mineralogist, 44, 795810.CrossRefGoogle Scholar
Fersmann, A.E. (1940) Pegmatites: Vol. 1, Granitepegmatites, Akademii Nauk SSSR, Moscow, [in Russian].Google Scholar
Förster, H-J., Tischendorf, G., Trumbull, R.B. and Gottesmann, B. (1999) Late-collisional granites in the Variscan Erzgebirge, Germany. Journal of Petrology, 40, 16131645.CrossRefGoogle Scholar
Freydier, R., Candaudap, F., Poitrasson, F., Arbouet, A., Chatel, B. and Dupré, B. (2008) Evaluation of infrared femtosecond laser ablation for the analysis of geomaterials by ICP-MS. Journal of Analytical Atomic Spectrometry, 23, 702710.CrossRefGoogle Scholar
Jochum, K.P., Stoll, B., Herwig, K., Willbold, M., Hofmann, A.W., Amini, M., Aarburg, S., Abouchami, W., Hellebrand, E., Mocek, B., Raczek, I., Stracke, A., Alard, O., Bouman, C., Becker, S., Dücking, M., Brätz, H., Klemd, R., de Bruin, D., Canil, D., Cornell, D., de Hoog, C.-J., Dalpé, C., Danyushevsky, L., Eisenhauer, A., Gao, Y., Snow, J.E., Groschopf, N., Günther, D., Latkoczy, C., Guillong, M., Hauri, E.H., Höfer, H.E., Lahaye, Y., Horz, K., Jacob, D.E., Kasemann, S.A., Kent, A.J.R., Ludwig, T., Zack, T., Mason, P.R.D., Meixner, A., Rosner, M., Misawa, K., Nash, B.P., Pfänder, J., Premo, W.R., Sun, W.D., Tiepolo, M., Vannucci, R., Vennemann, T., Wayne, D. and Woodhead, J.D. (2006) MPI-DING reference glasses for in situ microanalysis: new reference values for element concentrations and isotope ratios. Geochemistry Geophysics Geosystems, 7, http://dx.doi.org/10.1029/2005GC001060.Google Scholar
Kamenetsky, V.S., Naumov, B.V., Davidson, P., Van Achterbergh, E. and Ryan, C.G. (2004) Immiscibility between silicate magmas and aqueous fluids: a melt inclusion pursuit into the magmatic-hydrothermal transition in the Omsukchan Granite (NE Russia). Chemical Geology, 210, 7390.CrossRefGoogle Scholar
Keppler, H. and Wyllie, P.J. (1991) Partitioning of Cu, Sn, Mo, W, U, and Th between melt and aqueous fluid in the system haplogranite-H2O-HCl and haplogranite-H2O-HF. Contributions to Mineralogy and Petrology, 109, 139150.CrossRefGoogle Scholar
Kotelnikova, Z.A. and Kotelnikov, A.R. (2010) Immiscibility in sulfate-bearing fluid systems at high temperatures and pressures. Geochemistry International, 48, 381389.CrossRefGoogle Scholar
Linnen, R.L., Pichavant, M., Holtz, F. and Burgess, S. (1995) The effect of fO2 on the solubility, diffusion, and speciation of tin in haplogranitic melt at 850ºC and 2 kbar. Geochimica et Cosmochimica Acta, 59, 15791588.CrossRefGoogle Scholar
Linnen, R.L., Pichavant, M. and Holtz, F. (1996) The combined effects of fO2 and melt composition on Sn on solubility and tin diffusivity in haplogranitic melts. Geochimica et Cosmochimica Acta, 60, 49654976.CrossRefGoogle Scholar
London, D. (1999) Melt boundary layers and growth of pegmatite textures. The Canadian Mineralogist, 37, 826827.Google Scholar
London, D. (2005) Granitic pegmatites: an assessment of current concepts and directions for the future. Lithos, 80, 281303.CrossRefGoogle Scholar
London, D. (2008) Pegmatites. The Canadian Mineralogist Special Publication, 10, 347 pp.Google Scholar
London, D. (2009) The origin of primary textures in granitic pegmatites. The Canadian Mineralogist, 47, 697724.CrossRefGoogle Scholar
London, D., Hervig, R.L. and Morgan, G.B. (1988) Melt-vapor solubilities and elemental partitioning in peraluminous granite-pegmatite systems: experimental results with Macusani glass at 200 MPa. Contributions to Mineralogy and Petrology, 99, 360373.CrossRefGoogle Scholar
London, D., Morgan, G.B. and Hervig, R.L. (1989) Vapor-undersaturated experiments with Macusani glass + H2O at 200 MPa, and the internal differentiation of granitic pegmatites. Contributions to Mineralogy and Petrology, 102, 117.CrossRefGoogle Scholar
Lukkari, S. (2007) Magmatic evolution of topaz-bearing granite stocks within the Wiborg rapakivi granite batholith. Department of Geology, University of Helsinki, Helsinki, 90 pp.Google Scholar
Lukkari, S., Thomas, R. and Haapala, I. (2009) Crystallization of the Kymi topaz granite stock within the Wiborg rapakivi granite batholith, Finland: evidence from melt inclusions. The Canadian Mineralogist, 47, 13591374.CrossRefGoogle Scholar
Manning, D.A.C. and Henderson, P. (1984) The behaviour of tungsten in granitic melt-vapour systems. Contributions to Mineralogy and Petrology, 86, 286293.CrossRefGoogle Scholar
Morgan, G.B. and London, D. (2003) Trace-element partitioning at conditions far from equilibrium: Ba and Cs distribution between alkali feldspar and undercooled hydrous granitic liquid at 200 MPa. Contributions to Mineralogy and Petrology, 144, 722738.CrossRefGoogle Scholar
Morgan, G.B. and London, D. (2005) Phosphorus distribution between potassic alkali feldspar and metaluminous haplogranitic liquid at 200 MPa (H2O): the effect of undercooling on crystal-liquid systematics. Contributions to Mineralogy and Petrology, 150, 456471.CrossRefGoogle Scholar
Pearce, N.J.G., Perkins, W.T., Westgate, J.A., Gorton, M.P., Jackson, S.E., Neal, C.R. and Chenery, S.P. (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandards Newsletter: The Journal of Geostandards and Geoanalysis, 21, 157161.CrossRefGoogle Scholar
Pokrovski, G.S., Borisova, A.Y., Roux, J., Hazemann, JL., Petdang, A., Tella, M. and Testemale, D. (2006) Antimony speciation in saline hydrothermal fluids: a combined X-ray absorption fine structure spectroscopy and solubility study. Geochimica et Cosmochimica Acta, 70, 41964214.CrossRefGoogle Scholar
Pokrovski, G.S., Roux, J., Hazemann, J-L., Borisova, A.Y., Gonchar, A.A. and Lemeshko, M.P. (2008) In situ X-ray absorption spectroscopy measurement of vapor-brine fractionation of antimony at hydrothermal conditions. Mineralogical Magazine, 72, 667681.CrossRefGoogle Scholar
Rickers, K., Thomas, R. and Heinrich, W. (2004) Trace element analysis of individual synthetic and natural fluid inclusions with synchrotron radiation XRF using Monte Carlo simulation for quantification. European Journal of Mineralogy, 16, 2335.CrossRefGoogle Scholar
Rickers, K., Thomas, R. and Heinrich, W. (2006) The chemical evolution of a water-, B-and F-rich granite-pegmatite system related to a Sn-W mineralization: a melt/fluid inclusion study. Mineralium Deposita, 41, 229245.CrossRefGoogle Scholar
Roedder, E. (1984) Fluid Inclusions. Reviews in Mineralogy, 12. Mineralogical Society of America, Washington DC, 646 pp.CrossRefGoogle Scholar
Romer, R.L., Thomas, R., Stein, H.J., and Rhede, D. (2007) Dating multiply overprinted Sn-mineralized granites-examples from the Erzgebirge, Germany. Mineralium Deposita, 42, 337359.CrossRefGoogle Scholar
Schneiderhöhn, H. (1961) Die Erzlagerstätten der Erde-Band II: Die Pegmatite. Gustav Fischer Verlag, Stuttgart, Germany, 720 pp.Google Scholar
Simmons, W.B. and Webber, K.L. (2008) Pegmatite genesis: state of the art. European Journal of Mineralogy, 20, 421438.CrossRefGoogle Scholar
Simon, A.C., Pettke, T., Candela, P.A. and Piccoli, P.M. (2009) The partitioning behaviour of silver in a vapour-brine-rhyolite melt assemblage. Geochimica et Cosmochimica Acta, 72, 16381659.CrossRefGoogle Scholar
Sorokin, V.I. and Dadze, T.P. (1994) Solubility and complex formation in the systems Hg-H2O, S-H2O, SiO2-H2O and SnO2-H2 Pp O. 5793. in: Fluids in the crust: Equilibrium and transport properties. (Shmulovich, K.I., Yardley, B.W.D. and Gonchar, G.G., editors). Chapman & Hall, London.Google Scholar
Sowerby, J.R. and Keppler, H. (2002) The effect of fluorine, boron and excess sodium on the critical curve in the albite-H2O system. Contributions to Mineralogy and Petrology, 143, 3237.CrossRefGoogle Scholar
Thomas, R. (1994) Estimation of the viscosity and the water content of silicate melts from melt inclusion data. European Journal of Mineralogy, 6, 511535.CrossRefGoogle Scholar
Thomas, R. and Davidson, P. (2008) Water and melt/ melt immiscibility, the essential components in the formation of pegmatites; evidence from melt in c lusions. Zeitschrift für Geologische Wissenschaften, 36, 347364.Google Scholar
Thomas, R. and Davidson, P. (2011) Water in granite and pegmatite-forming melts. Ore Geology Reviews (in press).Google Scholar
Thomas, R. and Veksler, I.V. (2002) Formation of granite pegmatites in the light of melt and fluid inclusion studies and new and old experimental work. Mineralogical Society of Poland Special Papers, 20, 4449.Google Scholar
Thomas, R. and Webster, J.D. (2000) Strong tin enrichment in a pegmatite-forming melt. Mineralium Deposita, 35, 570582.CrossRefGoogle Scholar
Thomas, R., Webster, J.D. and Heinrich, W. (2000) Melt inclusions in pegmatite quartz: complete miscibility between silicate melts and hydrous fluids at low pressure. Contributions to Mineralogy and Petrology, 139, 394401.CrossRefGoogle Scholar
Thomas, R. Förster, H.-J. and Heinrich, W. (2003) The behaviour of boron in a peraluminous granite– pegmatite system and associated hydrothermal solutions: a melt and fluid inclusion study. Contributions to Mineralogy and Petrology, 144, 457472.CrossRefGoogle Scholar
Thomas, R., Förster, H.-J., Rickers, K. and Webster, J.D. (2005) Formation of extremely F-rich hydrous melt fractions and hydrothermal fluids during differentiation of highly evolved tin-granite magmas: a melt/ fluid-inclusion study. Contributions to Mineralogy and Petrology, 148, 582601.CrossRefGoogle Scholar
Thomas, R., Webster, J.D. and Davidson, P. (2006a) Understanding pegmatite formation: the melt and fluid inclusion approach. Pp. 189210. in: Melt Inclusions in Plutonic Rocks. Mineralogical association of Canada short course, 36. Mineralogical Association of Canada, Montreal, Quebec, Canada.Google Scholar
Thomas, R., Webster, J.D., Rhede, D., Seifert, W., Rickers, K., Förster, H.-J., Heinrich, W. and Davidson P. (2006b) The transition from peraluminous to peralkaline granitic melts: evidence from melt inclusions and accessory minerals. Lithos, 91, 137149.CrossRefGoogle Scholar
Thomas, R., Davidson, P., Rhede, D. and Leh, M. (2009) The miarolitic pegmatites from the Königshain: a contribution to understanding the genesis of pegmatites. Contributions to Mineralogy and Petrology, 157, 505523.CrossRefGoogle Scholar
Thomas, R., Webster, J.D. and Davidson, P. (2011a) Bedaughter minerals in fluid and melt inclusions: implications for the enrichment of Be in granite– pegmatite systems. Contributions to Mineralogy and Petrology, 161, 483495.CrossRefGoogle Scholar
Thomas, R., Davidson, P. and Schmidt, C. (2011b) Extreme alkali bicarbonate-and carbonate-rich fluid inclusions in granite pegmatite from the Precambrian Rønne granite, Bornholm island, Denmark. Contributions to Mineralogy and Petrology, 161, 315329.CrossRefGoogle Scholar
Veksler, I.V. (2004) Liquid immiscibility and its role at magmatic-hydrothermal transition: a summary of experimental studies. Chemical Geology, 210, 731.CrossRefGoogle Scholar
Veksler, I.V. and Thomas, R. (2002) An experimental study of B-, P-and F-rich synthetic granite pegmatite at 0.1 and 0.2 GPa. Contributions to Mineralogy and Petrology, 143, 673683.CrossRefGoogle Scholar
Veksler, I.V., Thomas, R. and Schmidt, C. (2002) Experimental evidence of three coexisting immiscible fluids in synthetic granitic pegmatite. American Mineralogist, 87, 775779.CrossRefGoogle Scholar
Vogel, R. (1959) Die heterogenen Gleichgewichte. Akademische Verlagsgesellschaft. Geest & Portig K.-G., Leipzig, Germany, 728 pp.Google Scholar
Webster, J.D., Thomas, R., Rhede, D., Förster, H.-J. and Seltmann, R. (1997) Melt inclusions in quartz from an evolved peraluminous pegmatite: geochemical evidence for strong tin enrichment in fluorine-rich and phosphorus-rich residual liquids. Geochimica et Cosmochimica Acta, 61, 25892604.CrossRefGoogle Scholar
Webster, J., Thomas, R., Förster, H.-J., Seltmann, R. and Tappen, Ch. (2004) Geochemical evolution of halogen-enriched granite magmas and mineralizing fluids of the Zinnwald tin-tungsten mining district, Erzgebirge, Germany. Mineralium Deposita, 39, 452472.CrossRefGoogle Scholar
Wigand, M.O. (2003) Geochemie und Geochronologie des Erongo-Komplexes, Namibia. Scientific Technical Report STR 05/02 of the Geo For schungs Zentrum Potsdam, University of Potsdam, Potsdam, Germany., 99 + 74 pp.Google Scholar
Wood, S.A. and Samson, I.M. (1998) Solubility of ore minerals and complexation of ore metals in hydrothermal solutions. Pp. 3380. in: Techniques in Hydrothermal Ore Deposit Geology (Richards, J.P. and Larson, P., editors). Reviews in Economic Geology, 10. Society of Economic Geologists, Littleton, Colorado, USA, 256 pp.Google Scholar
Wood, S.A. and Vlassopoulos, D. (1989) Experimental determination of hydrothermal solubility and speciation of tungsten at 500ºC and 1 kbar. Geochimica et Cosmochimica Acta, 53, 303312.CrossRefGoogle Scholar
Zajacz, Z., Halter, W.E., Pettke, T. and Guillong, M. (2008) Determination of fluid/melt partition coefficients by LA-ICPMS analysis of co-existing fluid and silicate melt inclusions: controls on element partitioning. Geochimica et Cosmochimica Acta, 72, 21692197.CrossRefGoogle Scholar
Zaraisky, G.P. (1994) The influence of acidic fluoride and chloride solutions on the geochemical behaviour of Al, Si and W. Pp. 139162. in: Fluids in the crust: Equilibrium and transport properties. (Shmulovich, K.I., Yardley, B.W.D. and Gonchar, G.G., Yardley, G.G. Gonchar, editors). Chapman & Hall, London.Google Scholar
Supplementary material: File

Borisova et al. supplementary material

Supplementary Table S1

Download Borisova et al. supplementary material(File)
File 71.2 KB
Supplementary material: File

Borisova et al. supplementary material

Supplementary Table S2

Download Borisova et al. supplementary material(File)
File 237.6 KB