Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-24T05:27:22.977Z Has data issue: false hasContentIssue false

Thermooxidative degradation of injection-moulded sepiolite/polyamide 66 nanocomposites

Published online by Cambridge University Press:  05 July 2018

A. Yebra-Rodríguez*
Affiliation:
Department of Geology and CEACTierra, Associated Unit IACT (CSIC-UGR), Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain
C. Fernández-Barranco
Affiliation:
Department of Geology and CEACTierra, Associated Unit IACT (CSIC-UGR), Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain
M. D. La Rubia
Affiliation:
Department of Chemical, Environmental and Materials Engineering, Higher Polytechnic School, University of Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain
A. Yebra
Affiliation:
Department of Optics, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071 Granada, Spain
A. B. Rodríguez-Navarro
Affiliation:
Department of Mineralogy and Petrology, Faculty of Sciences, Campus Fuentenueva s/n, 18071 Granada, Spain
J. Jiménez-Millán
Affiliation:
Department of Geology and CEACTierra, Associated Unit IACT (CSIC-UGR), Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain
*

Abstract

Clay/polymer nanocomposites (CPN) exhibit improved technical properties compared to their microand macro-counterparts. Nevertheless, thermal degradation of CPN may limit the applicability of these hybrid materials. In this paper accelerated ageing (110°C and 150°C) was performed in injection moulded pure polyamide 66 (PA66-S-0 samples) and polyamide 66 reinforced with 5 wt.% sepiolite (PA66-S-5 samples) CPN. Polymer degradation was monitored by the amount of newly formed carbonyl bonds. The carbonyl indices obtained indicate that degradation occurs to a greater extent as the temperature of the ageing process increases. Moreover, the degradation increases with time at the highest treatment temperature (150°C). On the other hand, the occurrence of carbonaceous silicates in the nanocomposite samples at high temperatures yields greater thermal stability of sepiolite/PA66 nanocomposites compared to pure PA66. Furthermore, the sepiolite nanofibres maintain their position in the reticulated semicrystalline structure. In agreement with those results, differential scanning calorimetry and X-ray diffraction analyses show that the motion of the amide groups in the polymer chains are constrained by the well dispersed sepiolite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlrichs, J.L., Serna, C. and Serratosa, J.M., (1975) Structural hydroxyls in sepiolites. Clays and Clay Minerals, 23, 119124.CrossRefGoogle Scholar
Alena, K., Dagmar, M., Francois, G.J., and Miroslav, S. (2013) Polymer/clay nanocomposites and their gas barrier properties. Polymer Composites, 34, 14181424.Google Scholar
Ammala, A., Hill, A.J., Meakin, P., Pas, S.J., and Turney, T.W., (2002) Degradation studies of polyolefins incorporating transparent nanoparticulate zinc oxide UV stabilizers. Journal of Nanoparticle Research, 4, 167174.CrossRefGoogle Scholar
Araújo, E.M., Barbosa, R., Rodrigues, A.W.B., Melo, T.J.A. and Ito, E.N., (2007) Processing and characterization of polyethylene/Brazilian clay nanocomposites. Materials Science and Engineering A, 445–446, 141147.CrossRefGoogle Scholar
ASTM (1996) Standards on Color and Appearance Measurements, 5th Edition. ASTM International, West Conshohocken, Pennsylvania, USA.Google Scholar
Balakrishnan, S. and Raghavan, D. (2003) Chemically functionalized clay epoxy nanocomposites for aerospace applications. Technical Proceedings of the 2003 Nanotechnology Conference and Trade Show, 3, 250253.Google Scholar
Bernstein, R., Derzon, D.K., and Gillen, K.T., (2005) Nylon 6.6 accelerated aging studies: Thermaloxidative degradation and its interaction with hydrolysis. Polymer Degradation and Stability, 88, 480488.CrossRefGoogle Scholar
Brill, R. (1942) über das Verhalten von Polyamiden beim Erhitzen. Journal für Praktische Chemie, 161, 4964.CrossRefGoogle Scholar
Bunn, C.W., and Garner, E.V., (1947) The crystal structures of two polyamides (“nylons”). Proceedings of the Royal Society of London. A: Mathematical and Engineering Sciences, 189, 3968.Google Scholar
Cerruti, P. and Carfagna, C. (2010) Thermal-oxidative degradation of polyamide 6,6 containing metal salts. Polymer Degradation and Stability, 95, 24052412.CrossRefGoogle Scholar
Choudalakis, G. and Gotsis, A.D., (2009) Permeability of polymer/clay nanocomposites: a review. European Polymer Journal, 45, 967984.CrossRefGoogle Scholar
Dasgupta, S., Hammond, W.B., Goddard III, W.A., (1996) Crystal structures and properties of nylon polymers from theory. Journal of the American Chemical Society, 118, 1229112301.CrossRefGoogle Scholar
Davis, R.D., Gilman, J.W., and VanderHart, D.L., (2003) Processing degradation of polyamide 6/montmorillonite clay nanocomposites and clay organic modifier. Polymer Degradation and Stability, 79, 111121.CrossRefGoogle Scholar
de SousaRodrigues, L.A., Figueiras, A., Veiga, F., Mendes de Freitas, R., Cunha Nunes, L.C., da Silva Filho, E.C., and da Silva Leite, C.M., (2013) The systems containing clays and clay minerals from modified drug release: A review. Colloids and Surfaces B: Biointerfaces, 103, 642651.Google Scholar
Dong, W. and Gijsman, P. (2010) Influence of temperature on the thermo-oxidative degradation of polyamide 6 films. Polymer Degradation and Stability, 95, 10541062.CrossRefGoogle Scholar
Fernández-Barranco, C., Yebra-Rodríguez, A., La Rubia- Garcia, M.D., Navas-Martos, F.J., and Alvarez- Lloret, P. (2014) Mechanical and crystallographic properties of injection-molded polyamide66/sepiolite nanocomposites with different clay loading. Polymer Composites, (in press).Google Scholar
Fornes, T.D., Yoon, P.J., and Paul, D.R., (2003) Polymer matrix degradation and color formation in melt processed nylon 6/clay nanocomposites. Polymer, 44, 75457556.CrossRefGoogle Scholar
Ghinea, R., Pérez, M.M., Herrera, L.J., Rivas, M.J., Yebra, A. and Paravina, R.D., (2010) Color difference thresholds in dental ceramics. Journal of Dentistry, 38, e57e64.CrossRefGoogle ScholarPubMed
Ghosh, S., Khastgir, D., Bhowmick, A.K., and Mukunda, P.G., (2000) Thermal degradation and ageing of segmented polyamides. Polymer Degradation and Stability, 67, 427436.CrossRefGoogle Scholar
Gijsman, P., Tummes, D. and Janssen, K. (1995) Differences and similarities in the thermooxidative degradation of polyamide 46 and 66. Polymer Degradation and Stability, 49, 121125.CrossRefGoogle Scholar
Hindeleh, A.M., and Johnson, D.J., (1978) Crystallinity and crystallite size measurement in polyamide and polyester fibres. Polymer, 19, 2732.CrossRefGoogle Scholar
Hong, C.H., Lee, Y.B., Bae, J.W., Jho, J.Y., Nam, B.U., and Hwang, T.W., (2005) Preparation and mechanical properties of polypropylene/ clay nanocomposites for automotive parts application. Journal of Applied Polymer Science, 98, 427433.CrossRefGoogle Scholar
ISO 4892-1 (2014) Methods of exposure to laboratory light sources. International Organization for Standardization, http://www.iso.org/iso/home.htm.Google Scholar
Ito, M. and Nagai. K. (2010) Thermal ageing and oxygen permeation of nylon-6 and nylon6/montmorillonite composites. Journal of Applied Polymer Science, 118, 928935.Google Scholar
Itoh, T. (1976) Change with temperature in crystal structures of nylons 6, 66 and 610. Japanese Journal of Applied Physics, 15, 22952306.CrossRefGoogle Scholar
Jain, A. and Vijayan, K. (2002) Effect of thermal ageing on Nylon 6,6 fibres. Journal of Materials Science, 37, 26232633.CrossRefGoogle Scholar
Jang, B.N., and Wilkie, C.A., (2005) The effects of clay on the thermal degradation behavior of poly(styrebeco- acrylonitirile). Polymer, 46, 97029713.CrossRefGoogle Scholar
Jones, B.F., and Galán, E. (1988) Sepiolite and palygorskite. Pp. 631674 in: Hydrous Phyllosilicates (Exclusive of Micas) (S.W. Bailey, editor). Reviews in Mineralogy and Geochemistry, 19. Mineralogical Society of America, Washington, DC.Google Scholar
Karmalm, P., Hjertberg, T., Jansson, A. and Dahl, R. (2009) Thermal stability of poly(vinyl chloride) with epoxidised soybean oil as primary plasticizer. Polymer Degradation and Stability, 94, 22752281.CrossRefGoogle Scholar
Kartalis, C.N., Papaspyrides, C.D., Pfaendner, R., Hoffmann, K. and Herbst, H. (2001) Recycled and restabilized HDPE bottle crates: Retention of critical properties after heat aging. Polymer Engineering & Science, 41, 771781.CrossRefGoogle Scholar
Kazaryan, L.G., Zezina, L.A., and Pavlov, N.N., (1987) Thermal expansion of the crystalline lattice of polyamides. Polymer Science USSR, 29, 10521058.CrossRefGoogle Scholar
Kiliaris, P., Papaspyrides, C.D., and Pfaendner, R. (2009) Influence of accelerated aging on clay-reinforced polyamide 6. Polymer Degradation and Stability, 94, 389396.CrossRefGoogle Scholar
Lee, S.S., and Phillips, P.J., (2007) Melt crystallized polyamide 6.6 and its copolymers, Part I. Melting point – Lamellar thickness relations in the homopolymer. European Polymer Journal, 43, 19331951.CrossRefGoogle Scholar
Levchik, S.V., Weil, E.D., and Lewin, M. (1999) Thermal decomposition of aliphatic nylons. Polymer International, 48, 532557.3.0.CO;2-R>CrossRefGoogle Scholar
Liu, X. and Wu, Q. (2002) Polyamide 66/clay nanocomposites via me lt intercalation. Macromolecular Materials and Engineering, 287, 180186.3.0.CO;2-T>CrossRefGoogle Scholar
Lu, Y., Zhang, G., Feng, M., Zhang, Y., Yang, M. and Shen, D. (2003) Hydrogen bonding in polyamide 66/ clay nanocomposite. Journal of Polymer Science Part B: Polymer Physics, 41, 23132321.CrossRefGoogle Scholar
Murthy, N.S., (2006) Hydrogen bonding, mobility, and structural transitions in aliphatic polyamides. Journal of Polymer Science: Part B: Polymer Physics, 44, 17631782.CrossRefGoogle Scholar
Pandey, J.K., Reddy, R., Kumar, A.P., and Singh R.P. (2005) An overview on the degradability of polymer nanocomposites. Polymer Degradation and Stability, 88, 234250.CrossRefGoogle Scholar
Pérez, M.M., Melgosa, M., El Moraghi, A. and Hita, E. (2000) Usefulness of cathode ray tube color displays in chromaticity–discrimination experiments. Applied Optics, 22, 40214030.CrossRefGoogle Scholar
Qin, H., Su, Q., Zhang, S., Zhao, B. and Yang, M. (2003) Thermal stability and flammability of polyamide 66/montmorillonite nanocomposites. Polymer, 44, 75337538.CrossRefGoogle Scholar
Rao, Y. and Pochan, J.M., (2007) Mechanics of polymerclay nanocomposites. Macromolecules, 40, 290296.CrossRefGoogle Scholar
Reis, K.C., and Canevarolo, S.V., (2012) Evaluation of the structure of polypropylene/montmorillonite nanocomposite by in-line light extinction and color measurements during multiple extrusions. Polymer Engineering & Science, 52, 17841794.CrossRefGoogle Scholar
Rhim, J.W., Park, H.M., and Ha, C.S., (2013) Bionanocomposites for food packaging applications. Progress in Polymer Science, 38, 16291652.CrossRefGoogle Scholar
Rodríguez-Navarro, A., (2006) XRD2DScan: new software for polycrystalline materials characterization using two-dimensional X-ray diffraction. Journal of Applied Crystallography, 39, 905909.CrossRefGoogle Scholar
Ruiz-Hitzky, E., and Van Meerbeek, A. (2006) Clay mineral- and organoclay-polymer nanocomposite. Pp. 583621 in: Developments in Clay Science, 1 (F. Bergaya, B.K.G. Theng and G. Lagaly, editors). Elsevier, Amsterdam.Google Scholar
Sancaktar, E. and Kuznicki, J. (2011) Nanocomposite adhesives: mechanical behavior with nanoclay. International Journal of Adhesion and Adhesives, 31, 286300.CrossRefGoogle Scholar
Shamey, R. and Sinha, K. (2003) A review of degradation of nylon 6.6 as a result of exposure to environmental conditions. Review of Progress in Coloration and Related Topics, 33, 93107.Google Scholar
Starkweather, H.W. Jr., (1989) Deconvolution of the excess heat capacity of the Brill transition in nylon 66. Macromolecules, 22(4), 20002003.CrossRefGoogle Scholar
UNE-EN ISO 527-2 (2012). Plásticos. Determinación de las propiedades en tracción. Parte 2: Condiciones de ensayo de plásticos para moldeo y extrusión. Madrid. Uribe-Calderon, J., Lennox, B. and Kamal, M.R., (2008) Thermally stable phosphonium-montmorillonite organoclays. Applied Clay Science, 40, 9098.CrossRefGoogle Scholar
Usuki, A., Hasegawa, N. and Kato, M. (2005) Polymerclay nanocomposites. Advanced Polymer Science, 179, 135195.CrossRefGoogle Scholar
Usuki, A., Kojima, Y., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T. and Kamigaito, O. (1993) Synthesis of nylon 6-clay hybrid. Journal of Materials Research, 8, 11791184.CrossRefGoogle Scholar
VanderHart, D.L., Asano, A. and Gilman, J.W., (2001a) NMR measurements related to clay-dispersion quality and organic-modifier stability in nylon-6/ clay nanocomposites. Macromolecules, 34, 38193822.CrossRefGoogle Scholar
VanderHart, D.L., Asano, A. and Gilman, J.W., (2001b) Solid-state NMR investigation of paramagnetic nylon-6 clay nanocomposites. 1. Crystallinity, morphology, and the direct influence of Fe3+ on nuclear spins. Chemistry of Materials, 13, 37963809.CrossRefGoogle Scholar
Vasanthan, N., Murthy, N.S., and Bray, R.G., (1998) Investigation of Brill transition in nylon 6 and nylon 6,6 by infrared spectroscopy. Macromolecules, 31, 84338435.CrossRefGoogle Scholar
Warwicker, J.O., (1970) The structural causes of the Starkweather, H.W. Jr., (1989) Deconvolution of the excess heat capacity of the Brill transition in nylon 66. Macromolecules, 22(4), 20002003.Google Scholar
UNE-EN ISO 527-2 (2012). Plásticos. Determinación de las propiedades en tracción. Parte 2: Condiciones de ensayo de plásticos para moldeo y extrusión. Madrid. Uribe-Calderon, J., Lennox, B. and Kamal, M.R., (2008) Thermally stable phosphonium-montmorillonite organoclays. Applied Clay Science, 40, 9098.CrossRefGoogle Scholar
Usuki, A., Hasegawa, N. and Kato, M. (2005) Polymerclay nanocomposites. Advanced Polymer Science, 179, 135195.CrossRefGoogle Scholar
Usuki, A., Kojima, Y., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T. and Kamigaito, O. (1993) Synthesis of nylon 6-clay hybrid. Journal of Materials Research, 8, 11791184.CrossRefGoogle Scholar
VanderHart, D.L., Asano, A. and Gilman, J.W., (2001a) NMR measurements related to clay-dispersion quality and organic-modifier stability in nylon-6/ clay nanocomposites. Macromolecules, 34, 38193822.CrossRefGoogle Scholar
VanderHart, D.L., Asano, A. and Gilman, J.W., (2001b) Solid-state NMR investigation of paramagnetic nylon-6 clay nanocomposites. 1. Crystallinity, morphology, and the direct influence of Fe3+ on nuclear spins. Chemistry of Materials, 13, 37963809.CrossRefGoogle Scholar
Vasanthan, N., Murthy, N.S., and Bray, R.G., (1998) Investigation of Brill transition in nylon 6 and nylon 6,6 by infrared spectroscopy. Macromolecules, 31, 84338435.CrossRefGoogle Scholar
Warwicker, J.O., (1970) The structural causes of the dyeing variations of nylon yarns subjected to dry heat. Journal of the Society of Dyers and Colourists, 86, 303310.CrossRefGoogle Scholar
Xie, W., Gao, Z., Pan, W.P., Hunter, D., Singh, A. and Vaia, R. (2001) Thermal degradation chemistry of alkyl quaternary ammonium montmorillonite. Chemistry of Materials, 13, 29792990.CrossRefGoogle Scholar
Yebra-Rodríguez, A., Á lvarez-Lloret, P., Rodríguez- Navarro, A.B., Martín-Ramos, J.D., and Cardell, C. (2009a) Thermo-XRD and differential scanning calorimetry to trace epitaxial crystallization in PA6/montmorillonite nanocomposites. Materials Letters, 63, 11591161.CrossRefGoogle Scholar
Yebra-Rodríguez, A., Á lvarez-Lloret, P., Cardell, C. and Rodríguez-Navarro, A.B., (2009b) Crystalline properties of injection molded polyamide-6 and polyamide- 6/montmorillonite nanocomposites. Applied Clay Science, 43, 9197.CrossRefGoogle Scholar
Yebra-Rodríguez, A., Alvarez-Lloret, P., Yebra, A., Cardell, C. and Rodríguez-Navarro, A.B., (2011) Influence of processing conditions on the optical and crystallographic properties of injection molded polyamide-6 and polyamide-6/montmorillonite nanocomposites. Applied Clay Science, 51, 414418.CrossRefGoogle Scholar
Yoon, P.J., Fornes, T.D., and Paul, D.R., (2002) Thermal expansion behavior of nylon 6 nanocomposites. Polymer, 43, 67276741.CrossRefGoogle Scholar
Zhao, X., Li, X., Ye, L. and Li, G. (2012) Stressthermooxidative aging behavior of polyamide 6. Journal of Applied Polymer Science, 129, 11931201.CrossRefGoogle Scholar